
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42113-022-00149-y

ORIGINAL PAPER

Boosting Human Decision‑making with AI‑Generated Decision Aids

Frederic Becker1 · Julian Skirzyński1,2 · Bas van Opheusden3 · Falk Lieder1

Accepted: 21 July 2022
© The Author(s) 2022

Abstract
Human decision-making is plagued by many systematic errors. Many of these errors can be avoided by providing decision
aids that guide decision-makers to attend to the important information and integrate it according to a rational decision strat-
egy. Designing such decision aids used to be a tedious manual process. Advances in cognitive science might make it possible
to automate this process in the future. We recently introduced machine learning methods for discovering optimal strategies
for human decision-making automatically and an automatic method for explaining those strategies to people. Decision aids
constructed by this method were able to improve human decision-making. However, following the descriptions generated by
this method is very tedious. We hypothesized that this problem can be overcome by conveying the automatically discovered
decision strategy as a series of natural language instructions for how to reach a decision. Experiment 1 showed that people
do indeed understand such procedural instructions more easily than the decision aids generated by our previous method.
Encouraged by this finding, we developed an algorithm for translating the output of our previous method into procedural
instructions. We applied the improved method to automatically generate decision aids for a naturalistic planning task (i.e.,
planning a road trip) and a naturalistic decision task (i.e., choosing a mortgage). Experiment 2 showed that these automatically
generated decision aids significantly improved people’s performance in planning a road trip and choosing a mortgage. These
findings suggest that AI-powered boosting might have potential for improving human decision-making in the real world.

Keywords Improving human decision-making · Boosting · Decision aids · Far-sightedness · Interpretable machine
learning · Automatic strategy discovery

Introduction

Many researchers working on judgment and decision-mak-
ing (e.g., Tversky & Kahneman, 1974; Gilovich et al., 2002)
have argued that human decision-making is plagued by many
systematic errors known as cognitive biases (but see Gig-
erenzer, 1991; Gigerenzer et al., 2008). In particular, older
people often come to regret the short-sighted decisions they
made about their health, education, and finances when they
were younger (Kinnier & Metha, 1989). Consistent with this

observation, numerous experiments on intertemporal choice
have consistently found that people’s decisions depend pri-
marily on the immediate outcomes of potential choices and
underweight their more weighty long-term consequences
(Milkman et al., 2008; O’Donoghue & Rabin, 2015). Those
short-sighted choices can be traced back to the strategies
people use to make decisions (Reeck et al., 2017). Therefore,
one way to address such problems is to improve people’s
decision strategies. This is an instance of boosting (Hertwig
& Grüne-Yanoff, 2017). Boosting human decision-making
has many benefits over delegating decisions to algorithms.
Firstly, there are multiple areas, such as medicine and the
judicial system, in which humans are and will continue to be
the ultimate decision-makers for ethical reasons. Secondly,
people have to make many subjective decisions that depend
on their personal values. Helping people make better deci-
sions in these settings is crucial for increasing our society’s
well-being.

Boosting can be implemented by training people or by
supporting them while they make a decision. The benefits of

Frederic Becker and Julian Skirzyński share joint first authorship.

 * Frederic Becker
 frederic.becker@tuebingen.mpg.de

1 Max Planck Institute for Intelligent Systems, Tübingen,
Germany

2 University of California, San Diego, San Diego, CA 92093,
USA

3 Princeton University, Princeton, NJ 08544, USA

/ Published online: 7 September 2022

Computational Brain & Behavior (2022) 5:467–490

http://orcid.org/0000-0002-8477-5203
http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-022-00149-y&domain=pdf

1 3

training on a simple task rarely transfer to the more complex
problems people face in the real world (Sala & Gobet, 2017;
Sala et al., 2019; Becker et al., 2021). One way to side-
step this problem is to provide people with decision aids
that support them directly in those decisions that are to be
improved (Fig. 1). Previous research showed that real-world
decisions in the domains of finance and medicine can be
improved by providing people with decision aids (e.g., a
decision tree) that guide them through the application of
clever heuristic that direct the decision-maker’s attention
to the most essential pieces of information (Hafenbrädl
et al., 2016). Recent work has developed algorithms for gen-
erating and visualizing decision trees automatically (Phillips
et al., 2017; Rudin et al., 2022). However, equivalent tools
do not yet exist for helping people solve complex planning
problems. Designing decision aids for such problems by
hand can be very tedious, and coming up with clever heuris-
tics can very difficult. As a first step toward addressing this
problem, we recently developed a computational method for
automatically designing decision aids for sequential decision
problems that require planning (Skirzyński et al., 2021a).
This AI-powered boosting method leverages Artificial
Intelligence (AI) to derive smart decision strategies from
a mathematical theory of optimal decision-making with
finite time, limited time, and bounded cognitive resources
(Lieder & Griffiths, 2020b). The decision aids constructed
by this method were able to improve human decision-mak-
ing (Skirzyński et al., 2021a). However, using these deci-
sion aids is tedious because they do not explicitly specify
the decision process directly. Rather, they specify a process
for determining whether the next step the decision-maker
is considering to take is consistent with the recommended
heuristic. The goal of this article is to develop an improved
method that can generate decision aids that directly describe
the automatically discovered heuristic in natural language.

We hypothesized that step-by-step instructions for how
to reach a decision would be significantly easier for people
to follow than the decision aids generated by our previous
method (Skirzyński et al., 2021a). After confirming that such
procedural instructions are more interpretable and easier to

follow than the previous version of our decision aids, we
developed a new algorithm for transforming the output of the
previous method (Skirzyński et al., 2021a) into procedural
instructions. The extended method automatically generates
step by step, natural language instructions for how to reach
a decision. These instructions are generated from a pair of
two inputs: (i) a model of the general structure of a particular
(sequential) decision problem, and (ii) a dictionary of what
the relevant components of the general problem are called
in the concrete application. This approach is very general
and can be applied to different kinds of decision problems.
In particular, the two algorithms we utilized to set up our
approach give rise to a new policy-agnostic method for inter-
preting reinforcement learning policies, which is an impor-
tant part of the problem known as explainable reinforcement
learning (Puiutta & Veith, 2020; Dazeley et al., 2021). As
a proof of concept, we demonstrate that our method can be
used to make more far-sighted choices in two naturalistic
decision-tasks: planning a road trip and choosing a mortgage
(see Fig. 2a and b). We found that people can understand
and follow the automatically generated procedural instruc-
tions in both tasks and consequently made better decisions.
These findings suggest that AI-powered boosting can be very
effective at improving human decision-making in naturalistic
tasks.

The article is structured as follows. In the next section
we provide further information on approaches striving to
improve human decision-making and discuss the connec-
tions between our method and other approaches to deci-
sion support. In the third section, we show that procedural
descriptions of planning strategies are better suited to
improve human decision-making than the descriptions gen-
erated by the previous method (Skirzyński et al., 2021a). In
the following section, we present a new method for auto-
matically generating procedural descriptions of planning
strategies. In Section 5, we test the extent to which decision
aids obtained with our method improve human decision-
making in more naturalistic decision problems. Lastly, we
summarize and discuss our findings in Section 6.

Background

Reinforcement Learning

To understand the underlying principles and mechanisms of
AI-powered boosting, we provide a handful of definitions
for mathematical constructs that are used by this approach.
Those constructs regard the theory of reinforcement learn-
ing that enables to compute solutions to sequential decision
problems that are provably optimal. Moreover, these meth-
ods play an important role in our approach to discovering
optimal cognitive strategies for human decision-making.

Fig. 1 AI-powered boosting relies on discovering optimal decision
strategies by modeling decision problems as a metalevel Markov
Decision Process and solving them with metalevel reinforcement
learning (Griffiths et al., 2019)

468 Computational Brain & Behavior (2022) 5:467–490

1 3

The first definition presents a structure that is a general
model of decision-making problems called Markov Deci-
sion Process (see Definition 1). Representing a decision
problem in terms of a Markov Decision Process becomes
possible by specifying what states exist in this problem,
what actions might be taken, how valuable (rewarding)
each of the actions is in the states, and how the actions
change the states form one to another.

Definition 1 (Markov Decision Process) A Markov
decision process (MDP) is a tuple (S,A, T,R, �)
where S is a set of states; A is a set of actions;
T(s, a, s�) = ℙ(st+1 = s� ∣ st = s, at = a) for s ≠ s� ∈ S, a ∈ A
is a state transition function; � ∈ (0, 1) is a discount factor;
R ∶ S → ℝ is a reward function.

Having modeled a decision problem as an MDP, we
may further define a mathematical counterpart of a deci-
sion strategy, namely a policy (see Definition 2).

Definition 2 (Policy) A deterministic policy � is a function
� ∶ S → A that specifies actions to take in each of the states
in the MDP and a non-deterministic policy � is a function
� ∶ S → Prob(A) that defines a probability distribution over
the actions for the states in the MDP.

Then, expected reward (see Definition 3) serves to
quantify the usefulness of policies (i.e. to quantify how
valuable or rewarding they are).

Definition 3 (Expected reward) The reward rt represents
the quality of performing action at in state st . The cumulative
return of a policy is a sum of its discounted rewards obtained
in each step of interacting with the MDP, i.e. G�

t
=

∞∑
i=t

� trt for

� ∈ [0, 1] . The expected reward J(�) of policy � is equal to
J(�) = �(G�

0
).

Fig. 2 Naturalistic decision-
tasks used in Experiment 2.
a In the Road Trip task, the
objective is to efficiently find an
inexpensive route to a city with
an airport. Participants can use
a search engine to look up how
costly it is to spend the night in
different cities. b In the Mort-
gage task the goal is to choose
the most affordable mortgage
by considering interest rates
for different time horizons.
Participants can learn about
the interest rates by clicking on
appropriate boxes

469Computational Brain & Behavior (2022) 5:467–490

1 3

Finally, equipped with these formalizations of decision
strategies and their quality in the problem modeled by the
MDP, we need an approach for finding strategies whose
quality is high. A family of methods which solve that prob-
lem and find policies with the highest reward is called rein-
forcement learning (see Definition 4).

Definition 4 (Reinforcement learning) Reinforcement
learning (RL) is a class of methods that perform iterations
over trials and evaluation on a given MDP to find the optimal
policy �∗ which maximizes the expected reward (Sutton &
Barto, 2018).

Modeling Planning as Information Acquisition

In our quest to improve human planning, we used a theo-
retical framework developed to study and improve human
planning, namely the resource-rational theory of optimal
human planning (Callaway et al., 2022b, 2018b). Accord-
ing to this theory, planning can be understood as a series
of information gathering operations that gradually refine a
person’s estimates of the short- and long-term consequences
of alternative courses of action. This idea gave rise to an
empirical paradigm (i.e., the Mouselab-MDP paradigm) that
operationalizes human planning by the series of clicks made
to collect information about the rewards hidden at different
locations of the environment of a path planning task (see
Fig. 3). As each click has a cost, finding the best possible

path is a nontrivial problem. According to the theory, by
collecting a sequence of clicks people made to decide which
path is best, we gain an insight into people’s planning pro-
cess and the strategies they used.

Approaches to Improving Human Decision‑making

Interventions designed to tackle decision-making biases
include educating people about rational decision-making
(Larrick, 2004) and boosting people’s decision-making by
conveying simple heuristics they can use to arrive at good
decisions (Hertwig & Grüne-Yanoff, 2017; Hafenbrädl
et al., 2016). In the first approach, harmful biases are tackled
through motivating or incentivizing people to make better
decisions by showing them what they could gain by adopting
the principles of logic, probability theory, and expected util-
ity theory. The key limitation of this approach is that those
principles place unrealistically high cognitive demands on
people when they are applied to nontrivial real-world prob-
lems (Larrick, 2004). In response to the shortcomings of
the first approach, the second approach directs people to use
adaptive simple heuristics (Hertwig & Grüne-Yanoff, 2017;
Hafenbrädl et al., 2016; Gigerenzer & Todd, 1999). These
heuristics take advantage of common properties of decision
problems, and allow the decision-maker to quickly make
advantageous choices while being rather straightforward
to understand. Two ways of conveying adaptive heuristics
have been explored so far: teaching decision strategies and
designing decision aids (Hafenbrädl et al., 2016; Hertwig &
Grüne-Yanoff, 2017).

AI‑Powered Boosting

The general approach we followed in this study, called AI-
powered boosting, is to leverage artificial intelligence (AI)
to improve on previous efforts to boost human decision-
making. The essence of AI-powered boosting is to employ
machine learning to discover decision-making heuristics
automatically and then convey them to people (Callaway
et al., 2022a; Skirzyński et al., 2021a). This approach rests
on defining efficient decision strategies and computing them
by solving appropriate optimization problems. According to
this approach, optimal strategies for human decision-mak-
ing do not attempt to maximize the expected outcomes (cf.
Definition 3) because that would be intractable for people.
Computing the optimal decisions for every possible situation
is simply too computationally demanding for both people
and computers (Simon, 1997; Van Rooij, 2008). Optimal
decision strategies are instead defined as decision procedures
that achieve the highest possible level of resource-rationality
(Lieder & Griffiths, 2020b), which is defined as the expected
utility of the choices that a given heuristic will make when a
person uses it in a given environment minus the opportunity

Fig. 3 Mouselab-MDP with increasing variance. Nodes in the Mou-
selab-MDP represent short-, mid-, and long-term consequences of
potential actions where the black node is the starting position, and
connections in the Mouselab-MDP symbolize “possible later con-
sequence” relation. Information on the consequences is represented
numerically as rewards, and can be acquired by clicking on the
nodes. Rewards are drawn from a normal distribution whose vari-
ance increases with the distance of the node from the starting node.
Thus, rewards that are farthest from the starting position (long-term
consequences) show the highest variance. As gathering information
is costly, the agent’s goal in the Mouselab-MDP is to make as few
clicks as possible to uncover the best possible course of actions with
the highest total reward

470 Computational Brain & Behavior (2022) 5:467–490

1 3

cost of the time and mental resources it expends to reach
those decisions.

When faced with a new decision, people generally can-
not compute the resource-rational decision strategy for that
scenario themselves, and doing so would be more demand-
ing than computing the optimal decision (Lieder & Grif-
fiths, 2020b, a; Rich et al., 2020). However, many resource-
rational strategies can be executed with minimal effort
once they have been learned (Callaway et al., 2022a; He
et al., 2021; He & Lieder, 2022; Lieder & Griffiths, 2020b,
a). Moreover, people can learn to efficiently detect which of
their strategies is best suited for the decision they are facing
(Lieder & Griffiths, 2017). This makes deriving resource-
rational strategies for specific decisions people frequently
face and conveying them to people a promising approach to
improving human decision-making (Callaway et al., 2022a).
Researchers interested in improving human decision-making
can derive resource-rational strategies by leveraging artifi-
cial intelligence to compute the optimal policies of metalevel
Markov Decision Processes (Lieder et al., 2017; Callaway
et al., 2018a; Griffiths et al., 2019). Having solved such a
problem, the result is a function for choosing the next plan-
ning operation according to information revealed by previ-
ous planning operations, called a metalevel policy.

Formally, AI-powered boosting (Callaway et al., 2022a)
proceeds by modeling the problem of selecting an optimal
sequence of cognitive operations as a Markov Decision
Process (Sutton & Barto, 2018), leverages reinforcement
learning to derive the optimal policy for selecting planning
operations from that model, and then conveys this policy to
people. There are two different approaches for doing so: via
intelligent cognitive tutors (Callaway et al., 2022a; Consul
et al., 2022) and via AI-generated decision aids (Skirzyński
et al., 2021a) (see Fig. 1). Intelligent cognitive tutors train
people to internalize the metalevel policy so that they can
subsequently apply the automatically discovered decision
strategy independently without further assistance. By con-
trast, AI-generated decision aids display a description of
the automatically discovered decision strategy while people
make their decisions.

AI-powered boosting has been shown to be a promising
approach for improving human planning skills (Callaway
et al., 2022a). The intelligent tutors presented in Callaway
et al. (2022a) taught people how to efficiently plan in the
environment shown in Fig. 3. After each planning operation
performed by participants (i.e., a click uncovering a num-
ber), the tutor either praised them for following the optimal
planning strategy, or penalized them by forcing to wait an
amount of time proportional to the suboptimality of their
planning operation. This procedure significantly improved
people’s planning skills when they interacted with a dif-
ferent, transfer environment. Subsequent work employed
intelligent cognitive tutors that teach people by showing

video demonstrations of the automatically discovered strat-
egy (Consul et al., 2022; Mehta et al., 2022). Consul et al.
(2022) developed intelligent cognitive tutors that improved
people’s planning in very large versions of the environment
illustrated in Fig. 3.

Here, we extend and evaluate a recent AI-powered boost-
ing method that conveys automatically discovered strategies
through automatically designed decision aids (Skirzyński
et al., 2021a). The original version of this method comprises
four steps.

The first two steps are the same as in Callaway et al.
(2022a): the problem of selecting an optimal sequence of
planning operations is modeled as a Markov Decision Pro-
cess (MDP), and then reinforcement learning algorithms are
utilized to find the optimal strategy from this model. This
is where the first input to AI-powered boosting mentioned
in the Introduction is required: the model of the decision
problem. Here, we model decision problems in the Mouse-
lab-MDP framework (Callaway et al., 2017, 2022b). This
is a very general framework for modeling problems which
involve sequentially processing, integrating, and selecting
multiple pieces of information. This makes our approach
applicable to a wide range of decision problems.

In the third step, a set of logical primitives is created,
and an imitation learning algorithm called AI-Interpret uses
these primitives to generate an interpretable description of
the optimal strategy as a logical formula. Importantly, the
formula generated by AI-Interpret is expressed in conjunc-
tive normal form, that is a disjunction of conjunctions, which
can be naturally expressed as a decision tree. Due to that,
after the outputted description is automatically translated to
natural language via a predefined primitives’ dictionary in
the fourth step, it is naturally formed into a static flowchart
(see Fig. 4). This flowchart evaluates to 1 (perform) or 0 (do
not perform) for each action and each possible state people
may encounter, and guides people through decision-making.
The fourth step also introduces the second input to AI-pow-
ered boosting mentioned in the introduction: a dictionary

Fig. 4 Sample flowchart obtained via the AI-powered boosting inter-
vention from Skirzyński et al. (2021a). The flowchart expresses a far-
sighted planning strategy in the Mouselab-MDP task with increasing
variance

471Computational Brain & Behavior (2022) 5:467–490

1 3

of the relevant problem components. Our previous work
(Skirzyński et al., 2021a) introduced a set of logical predi-
cates capable of representing multiple planning strategies
(Skirzyński et al., 2021b) used in the Mouselab-MDP, and
hence in multiple planning problems that can be represented
in this formalism. By translating these predicates into the
elements of the problem (e.g. graph-theoretic is_leaf
predicate could mean long-term consequences of actions),
our approach generates problem-specific natural language
instructions instead of logical formulas. Like previously,
successfully fulfilling this step relies on the researcher’s
knowledge of the problem and understanding of the Mou-
selab-MDP paradigm. For more complex problems, such as
chess playing, it is also possible that new predicates need to
be created and then translated.

Still, despite the success of AI-powered boosting in
improving human decision-making through static descrip-
tions (Skirzyński et al., 2021a), we hypothesized that more
naturalistic tasks may require a more easily interpretable
representation of the decision strategy. In the next section,
we present an experiment suggesting that procedural instruc-
tions are more effective than the decision aids constructed
by the original version of boosting presented by Skirzyński
et al. (2021a).

Experiment 1: Procedural Descriptions
of Planning Strategies Are More
Interpretable Than Static Descriptions

A key challenge of AI-powered boosting is to convey an
abstract and potentially complex planning strategy to people.
To support people effectively, the description of the strategy
should be easy to understand. The description presented by
the decision aid can either be static or procedural. We call
a family of descriptions that express a (planning) strategy
by listing conditions under which certain actions can be
taken static descriptions. A decision tree is one example
of a static description, and a decision set (a set of rules) is
another example. In both cases, a sequence of conditions
that describe the environment tell the decision-maker when
it is allowed to take which actions. A decision tree is the
most extreme instance, since the conditions may be mani-
fold, but specific actions have to be always coded inside the
tree, whereas the actual actions either perform (1) or do not
perform (0) the planning operation under consideration (see
Section 2.4). In contrast to static descriptions, one can define
procedural descriptions that express (planning) strategies
in terms of an ordered list of actions that need to be taken
sequentially according to the order. A program is a primary
example of a procedural description where the subroutines
specify the actions, and their positioning in the program (top
to bottom) defines the ordering.

The intervention introduced in Skirzyński et al. (2021a)
made an important hidden assumption about the preferred
way of conveying planning strategies to people, choosing
static descriptions as the output. However, a more intuitive
assumption is that procedural descriptions facilitate teach-
ing planning strategies to a greater extent. If this were the
case, then it might be possible to make AI-powered boost-
ing substantially more effective by generating procedural
descriptions rather than static descriptions. To find out if it
would be worthwhile to develop algorithms for generating
procedural instructions, we first tested whether procedural
descriptions of planning strategies are more interpretable
than static descriptions.

To do so, Experiment 1 was designed to determine if par-
ticipants are more successful in applying a planning strat-
egy when this strategy is expressed in terms of procedural
instructions or the static descriptions used by Skirzyński
et al. (2021a). To answer this question, participants in
Experiment 1 received decision aid on how to solve a
sequential decision problem. One half of the participants
received the static descriptions generated by the original ver-
sion of the method (Skirzyński et al., 2021a) and the other
half received hand-crafted procedural instructions. The main
goal of Experiment 1 was to compare people’s ability to
follow procedural versus static instructions. We therefore
asked participants to execute the described strategy as accu-
rately as possible. As a result, group differences in the task
performance should result primarily from differences in the
comprehensibility of static versus procedural descriptions.

Methods

Task

The template for the experimental task was the Mouselab-
MDP paradigm (Callaway et al., 2017, 2022b). In this task,
participants have to choose between six possible paths, each
of which involves a series of 3 steps. People can gather infor-
mation about how much reward they would receive for visit-
ing a location by clicking on it for a small fee. The objec-
tive is to balance expenses while finding a rewarding path.
Skirzyński et al. (2021a) demonstrated that automatically
generated static descriptions of planning strategies can boost
participants’ performance across multiple versions of that
task. We adopted the experiment with a static description
for the most demanding strategy for our purposes.

To create an unbiased comparison of static descriptions
and procedural instructions, we created an experiment where
the participants’ only task is to execute the described strat-
egy. Participants were instructed to select planning opera-
tions (i.e., clicks) according to the described strategy. To
minimize the risk that participants misunderstood the task
as collecting rewards, participants were not informed that

472 Computational Brain & Behavior (2022) 5:467–490

1 3

the numbers correspond to rewards and could neither pick
a path nor collect any rewards. This resulted in a sequen-
tial clicking task in which participants’ only objective was
to click nodes according to presented instructions. The
original static descriptions described the locations to click
based on attributes derived from graph theory, for example
whether a location is on the current most rewarding path
and whether a location can be found at a certain depth of
the graph. These kinds of descriptions can be difficult to
understand for laymen and usually require training. To sim-
plify the procedure, each attribute was visually presented
as a color. Based on the uncovered rewards, we computed
if an attribute applied to a location and, if so, the location
was marked with the corresponding color (see Fig. 5). One
location could be tagged with multiple colors. The attributes
used in the static descriptions and in the procedural instruc-
tions were replaced by the corresponding color names. The
manipulations described had two main advantages. First,
participants were not tempted to neglect the clicking instruc-
tions and apply their own clicking strategy, as we concealed
the original planning task. Second, the instructions required
only knowing the colors, giving very little room for misin-
terpretations compared to more complex attributes in the
original task. In sum, this manipulation eliminated possible
limitations of the original task and let us compare the degree
of interpretability of both static descriptions and procedural
instructions more directly. The environment participants
interacted with was the color-coded Mouselab-MDP and was
displayed on the left of the experiment’s screen, whereas the
instructions appeared on the right of the screen (see Fig. 5).
The static descriptions were the same as the ones used in
Skirzyński et al. (2021a) except that the attributes were

now color-coded. The procedural instructions were hand-
crafted and described the same clicking strategy as the static
descriptions. The instructions were as follows: “Click the
nodes that contain green and orange until you find a +10.
Then click the nodes that contain blue and pink.”.

Dependent Variables

To measure whether a participant understood the instruc-
tions, we counted the number of clicks that were consistent
versus inconsistent with the strategy they were instructed
to follow. Both measures were combined into one metric
called click agreement, which we defined as the proportion
of consistent clicks out of all performed clicks, that is

In the event that a participant finished the trial before having
clicked all the instructed locations, the expected number of
missed clicks counted toward the inconsistent clicks. We
calculated the number of missed click as the average number
that the instructed strategy performed in 1000 simulations
minus the number of clicks performed by the participant.
Click agreement is reported in percent. In addition, we meas-
ured the expected value of the score participants would have
received if they had performed their clicks in the Mouselab-
MDP task. By definition, the expected score is the sum of
rewards along the best path identified by the participant’s
clicks minus the cost of those clicks. Because the expected
value of unrevealed rewards was zero, the expected reward
of a path connecting the start node was equal to the sum of

(1)agreement =
nconsistent

nconsistent + ninconsistent
.

Fig. 5 Experiment 1: The experimental screen as shown to partici-
pants in the flowchart condition. On the right, the Mouselab-MDP
task with color-coded nodes. Each color represents a node property,
which can change depending on the uncovered values. On the right,

the color-coded flowchart depicting a specific clicking procedure. In
the alternative condition the flowchart is replaced with procedural
instructions

473Computational Brain & Behavior (2022) 5:467–490

1 3

the rewards revealed on that path. The cost of the partici-
pant’s clicks was 1 point per click.

Procedure

Participants were randomly assigned to a static descrip-
tions or a procedural instructions condition. Both condi-
tions started with an instructions block, in which the task
was introduced and motivated as a pass-code test required
to enter an extraterrestrial planet that can only be accessed
by following specific instructions. This was followed by an
attention check consisting of 3 multiple-choice questions,
a block explaining the procedure and the instructions (see
Appendix 1) and a final attention check consisting of 3 mul-
tiple-choice questions. After this, participants engaged in a
single practice trial in which they were instructed to click
locations marked with orange. They received feedback on
the correctness of their clicks and when to end the trial.
Lastly, there was a block of 10 test trials and a small demo-
graphic survey. The minimum time required to spend on a
trial was ten seconds. Participants were informed that they
would start with a bonus of $2 and lose 20 cents for each
trial in which they made an inconsistent click or quit early.
Neither their current amount of bonus nor the score was
displayed in the task. In addition, all participants received a
base payment of $1.

Participants

We recruited 21 people for the static descriptions condition
and 21 people for the procedural instructions condition on
Amazon Mechanical Turk (average age: 35.9 years, range:
18–65 years; 21 female). The experiment lasted 11.9 min on
average. Our predefined exclusion criterion, which excludes
individuals who do not perform any click in half of the test
trials, did not apply to any participant.

Results

The mean click agreement was 68.8% (Median: 59.8%,
SD=22.9%) in the static descriptions condition and 85.2%
(Median: 92.0%, SD=20.5%) in the procedural instruc-
tions condition, as illustrated in Fig. 6a. The variable was
not normally distributed; we thus employed a one-sided
Mann-Whitney-U test. We found that click agreement
was significantly higher in the procedural instructions
condition (A = .69;1 U=137, p=.018). Click agreement
and expected score were positively correlated (r(40)=.45
p=.003). Accordingly, the mean expected score was
higher in the procedural instructions condition (M= 6.6,
SD=2.7; see Fig. 6b) than in the static descriptions con-
dition (M= 5.5, SD=2.6), although this difference was
not statistically significant (d=0.41; t(40)=-1.3, p=.09).
The learning curves for click agreement and expected
score over the ten trials can be found in Appendix 2
(see Fig. 10). Furthermore, participants assisted by
procedural instructions were able to reach their deci-
sions significantly faster than participants assisted by
static descriptions (21.0 s vs. 31.6 s; d=0.95, t(40)=3.1,
p=.002). Moreover, we compared the performance of
the two experimental groups to a control group (N = 60)
that was instructed to maximize their score in the Mou-
selab-MDP task without being assisted by a decision
aid.2 The click agreement in both, the static descriptions
condition (A = .93 ; U=93, p=<.001) and the procedural
instructions condition (A = .95 ; U=59, p=<.001) was

Fig. 6 Experiment 1: a Pro-
cedural instructions are more
interpretable than static descrip-
tions (p=.018). The plot shows
the mean click agreement of
participants of the experimental
conditions (blue and red) and a
control condition (gray). b Par-
ticipants assisted by procedural
instructions had higher expected
scores than participants assisted
by static descriptions (p=.09).
The expected score that par-
ticipants would have received if
they had performed their clicks
in the Mouselab-MDP task 0%

25%

50%

75%

100%

none static procedural
Instructions

M
ea

n
cl

ic
k

ag
re

em
en

t

Click agreement per groupa

3

6

9

12

none static procedural
Instructions

M
ea

n
ex

pe
ct

ed
 s

co
re

Expected score per groupb

1 For non-parametric tests, we report the common language effect
size A, which describes the probability that a randomly chosen mem-
ber of group 1 scores higher on the dependent variable than a ran-
domly chosen member of group 2 (Ruscio 2008)
2 The control condition was part of Experiment 3 of our previous
work (Skirzyński et al. 2021a, b)

474 Computational Brain & Behavior (2022) 5:467–490

1 3

significantly larger than in the control condition (M=
31%, SD=16%). This also applied to the expected score
which was significantly larger in the static descriptions
condition (d=0.49, t(79)=1.9, p=.027) and the procedural
instructions condition (d=0.9, t(79)=3.6, p=.<001) than
in the control condition (M= 4.2, SD=2.6).

Discussion

The experiment was designed to compare people’s abil-
ity to follow procedural versus static instructions on how
to make a plan. We deliberately reduced the potentially
confounding effect of participants’ general decision-
making competency, domain knowledge, insights into
the specific decision problem, and opinions about which
strategy might be best. To achieve this, we chose a highly
abstract task and instructed all participants to follow the
instructions as accurately as possible. We can therefore
interpret the observed differences in task performance pri-
marily in terms of the comprehensibility of the instruc-
tions. In accordance with our hypothesis, we found that
procedural instructions were more helpful for people
than static descriptions. Even though the final expected
score obtained in the experiment did not differ signifi-
cantly between the conditions, the group which utilized
the procedural instructions was both faster and numeri-
cally more accurate in applying the described strategy. The
main reasons why the noticeable numerical difference in
accuracy was not statistically significant might be that our
sample size was rather small relative to the high variance
of the rewards in this particular task. The comparison to
a control group showed that both decision aids signifi-
cantly improved participants’ adherence to the instructed
strategy and the corresponding gain in expected score.
One possible explanation for the results we observed is
that static descriptions underutilize people’s capacity to
comprehend and execute structured, abstract procedures
(Miller et al., 1960). This interpretation suggests that the
static descriptions were unnecessarily detailed, long, and
repetitive.

We acknowledge that the optimal strategies for some
difficult problems could be so complex that they cannot
be approximated well by any verbal description. Apart
from those cases, the results of Experiment 1 should also
hold for more complex tasks because the difference in the
amount of effort required to follow static versus procedural
instructions would be even larger for larger tasks. Peo-
ple’s increased compliance with the near-optimal strategy
and their faster decisions found in Experiment 1 thus sug-
gest that it is worthwhile to extend our AI-based boosting
method to procedural instructions because people appear
to be much more willing and able to follow them.

AI‑Powered Boosting with Procedural
Descriptions of Optimal Decision Strategies

As mentioned in Section 2.4, the original version of AI-
powered boosting (Skirzyński et al., 2021a) generates
static descriptions in form of a flowchart (decision tree) for
verifying whether a candidate planning operation is con-
sistent with an optimal planning strategy. A key limitation
of this approach is that it does not explicitly tell people
which planning operations to perform but requires them
to come up with a good planning operation themselves and
then verify their hypothesis. Motivated by the results of
Experiment 1, we now present an algorithm for transform-
ing the output of AI-Interpret into a procedural descrip-
tion of how to plan that explicitly states which planning
operation should be performed first, second, third, and
so on. By coupling AI-Interpret with this new algorithm,
we obtain a general method for describing any RL policy
through procedural instructions. Our method is very gen-
eral because AI-Interpret is a policy-agnostic method that
only utilizes demonstrations of the policy to describe it.
It therefore contributes not only to the field of boosting
human decision-making but also to the field of explain-
able reinforcement learning (Puiutta & Veith, 2020; Daze-
ley et al., 2021). Notably, both AI-Interpret (Skirzyński
et al., 2021a) and our new algorithm compute approxima-
tions to the optimal policy and the flowchart, respectively.
AI-powered boosting hence generates lossy simplifica-
tions of the policies computed by dynamic programming
or reinforcement learning. However, those simplifications
are not only easier to grasp than static descriptions (see
Experiment 1), but they also achieve their objective to
improve human decision-making, as will we show in the
following sections.

Later in this article, we will focus on the application of
our new method to AI-powered boosting rather than stand-
ard RL tasks. This section hence presents our two major
technical contributions. In the first subsection, we detail
DNF2LTL — our algorithm for transforming disjunctive
normal form logical formulas into procedural descriptions.
In the second subsection, we present AI-powered boosting
extended with this algorithm.

Generating Procedural Descriptions of Planning
Strategies

The original output of AI-Interpret that is utilized by AI-
powered boosting is a Disjunctive Normal Form formula
(DNF; see Definition 9). Our algorithm, which we call
DNF2LTL, transforms such formulas into the procedural
format of Linear Temporal Logic (LTL; see Definition 5).

475Computational Brain & Behavior (2022) 5:467–490

1 3

DNF2LTL operates in two phases. In the first phase, it
modifies the input disjunctive normal form formula into an
entity called a procedural formula (see Definition 8), that
is an expression in a specific from of linear temporal logic.
In the second phase, the procedural formula is pruned to
remove as many unnecessary predicates as possible to
obtain the possibly simplest procedural description of the
automatically discovered strategy. We formally define the
output of our algorithm in the next section.

Procedural Formulas

Procedural formulas generated by our algorithm are special
cases of Linear Temporal Logic (LTL) formulas extended
with two additional operators.

First, LTL itself is a type of propositional logic that allows
expressing processes that change in time (see Definition 5).

Definition 5 (Linear Temporal Logic) Let P be the set of
propositional variables p (variables that can be either true or
false), let ¬,∧,∨ be standard logical operators for negation,
AND, and OR, respectively, and let �,�,� be modal opera-
tors for NEXT, UNTIL, and UNLESS, respectively. Linear
temporal logic (LTL) is a logic defined on (potentially infi-
nite) sequences of truth-assignments of propositional vari-
ables. LTL formulas are expressions that state which of the
variables are true, and when they are true in the sequence.
Whenever this agrees with the actual truth-assignment in an
input sequence, then we say that a formula is true.

Formally, for � and � being LTL formulas, we define a
formula to be expressed in LTL inductively: � is an LTL
formula if � ∈ P (� states that one of the variables is true
in the first truth-assignment in the sequence), � = ¬� (� is
a negation of an LTL formula), � = � ∨ � (� is a disjunction
of two LTL formulas), � = � ∧ � (� is a conjunction of two
LTL formulas), � = �� (� states that LTL formula � is true
starting from the next truth-assignment in the sequence) or
� = ��� (� states that LTL formula � is true until some
truth-assignment in the sequence where LTL formula �
becomes true).

We extend the standard definition of LTL to allow more
natural transition from decision trees to procedural instruc-
tions that, as we found in Experiment 1, are easier for peo-
ple to follow. To do so, we add a Hold operator that allows
introducing a default stopping condition (see Definition 6),
and a Loop operator that defines which part of the procedure
to repeat (see Definition 7).

Definition 6 (Hold modal operator) The HOLD operator �
is a unary operator in the linear temporal logic. LTL formula
�� states that � is true at least for the first truth-assignment
in the sequence of truth-assignments, and then eventually

becomes false. HOLD operator is the UNTIL operator with
a default until condition (“until it is no longer satisfied”).

Definition 7 (Loop modal operator) The LOOP operator
� is a binary operator in the linear temporal logic. LTL for-
mula ��� states that(i) part of � is an LTL formula � , (ii)
if � is replaced with some number of NEXT � operators
�� ∧⋯ ∧ �� , then the new � is true across the whole
sequence of truth-assignments. In other words, the LOOP
operator states that in order for LTL formula � to be true and
satisfy all truth-assignments in the sequence, LTL formula
� inside of � needs to be repeated the appropriate number
of times (form a “loop”). This formula corresponds to truth-
assignments in the sequence that disagree with �.

Finally, by adding the introduced operators to the LTL
formalism, we obtain procedural formulas (see Definition 8).

Definition 8 (Procedural formula) We say that f is a pro-
cedural formula if and only if f is an expression written in
linear temporal logic where the propositional variables are
predicates h ∶ S ×A → {0, 1} for some set of states S and
some set of actions A , and where the modal operators are
� (NEXT), � (UNTIL), � (UNLESS), � (HOLD), and �
(LOOP).

Transforming Disjunctive Normal Form Formulas
into Procedural Formulas

In the first phase, DNF2LTL generates a procedural for-
mula (see the previous section) out of a DNF formula (see
Definition 9).

Definition 9 (Disjunctive Normal Form) Let
fi, h ∶ X → {0, 1} for i ∈ ℕ be binary-valued functions
(predicates) on domain X . We call f1(x) ∨ f2(x) ∨⋯ ∨ fn(x)
a disjunction of predicates and f1(x) ∧ f2(x) ∧⋯ ∧ fn(x) a
conjunction of predicates. We say that h is in disjunctive
normal form (DNF) if h is a conjunction of disjunctions of
predicates fi.

To do so, our algorithm accepts four main inputs: the set
of trajectories that led to the creation of the DNF formula,
a set of predicates that could serve as the until or unless
conditions, a set of predicates which are unwanted in the
procedural formula, and, naturally, the DNF formula itself.

Definition 10 (Trajectory) A trajectory � = [�0,… ,�N−1]
is a sequence of N state-action pairs �i = (si, ai) with
si ∈ S, ai ∈ A, i = 0,… ,N − 1.

The trajectories (see Definition 10) play the role of the
sequences of truth-assignments from Definition 5, whereas

476 Computational Brain & Behavior (2022) 5:467–490

1 3

the set of predicates for until/unless conditions and the
DNF formula define the building blocks out of which
the procedural formula would be constructed. The other
remaining parameter is optional, and in case of a failure
in producing an output, the algorithm is ran again without
removing the redundant predicates. On a high level, our
algorithm exploits the idea that a DNF formula is satisfied
when at least one of its conjunctions is satisfied. It iterates
over the trajectories to discover the dynamics of changes
in truth values of the conjunctions, and uses the conjunc-
tions, the found dynamics, and the candidate until/unless
conditions to generate procedural formulas.

During the first phase, DNF2LTL generates an initial
procedural description in four steps. In the first step, the
algorithm extracts potential subroutines from the inputted
DNF formula. In the second step, the algorithm determines
the order in which those subroutines should be performed.
In the third step, the algorithm computes the logical condi-
tions for transitioning from each step to the next. Finally,
in the fourth step, our method connects the subroutines
with the appropriate conditions into a complete procedural
description and outputs the result. Algorithm 1 presents a
pseudocode that implements the first phase of DNF2LTL
and the following paragraph provides a technical descrip-
tion of each of these four steps in greater detail. We relate
this description to the pseudocode by listing its relevant
line numbers in brackets. Readers who are primarily inter-
ested in the big picture and the application to boosting
human planning can skip these technical details.

Step 1: DNF2LTL starts by dividing the DNF formula
into a set of conjunctions and removing all the
unwanted predicates [Lines 3–4].

Step 2: Then, it iterates over the trajectories and for each
trajectory records the sequence of conjunctions
that were true for that trajectory so that the whole
DNF formula could be true across all the state-
action pairs within it. Our algorithm then creates
a transition graph where conjunction ci is con-
nected with conjunction cj if there is at least one
trajectory� where the value of ci changed from true
to false at the same moment when the value of cj
changed from false to true [Line 9]. The transition
graph is used to generate maximum length
sequences of conjunctions ci1ci2 … cin to capture
the possibly fullest transition evidenced in the data
[Line 10]. The last predicate in this sequence (i.e.,
cin) either has no outgoing connections in the tran-
sition graph or connects to one of the cij s in which
case the sequence ends with a special loop symbol

that indicates which ij that is. The resulting maxi-
mum length sequences are used to define equiva-
lence classes for the trajectories. These equiva-
lence classes represent potential dynamics of how
the conjunctions change their truth values so that
the full DNF formula was satisfied. Each trajec-
tory, treated as a sequence of conjunctions of the
DNF formula, is then assigned to a number of
equivalence classes. Namely, trajectory � repre-
sented by sequence s is assigned to all equivalence
classes e for which s is a subsequence of e. For
instance if � is represented by sequence c1c3 , it
could be assigned to equivalence class
c1c2c3c4 LOOP c2 [Line 11]. This whole process
in Step 2 is performed to generate candidates for
procedural descriptions.

Step 3: Then, the algorithm transforms unempty equiva-
lence classes into procedural formulas. It does so
by using the trajectories in the class [Line 13] to
iteratively find UNTIL operators (UNTIL condi-
tions) that could separate each of the elements in
the sequence representing the class. During one
iteration, DNF2LTL searches for the UNTIL con-
dition separating a pair of subsequent conjunc-
tions. Possible candidates for UNTIL conditions
are the allowed predicates provided as an input to
the method and 2-element disjunctions of those
predicates [Input P], i.e. we hand-engineer pos-
sible operators a priori. For a pair of subsequent
conjunctions cici+1 , the matching conditions are
such whose truth value changes from constantly
false, while ci is true, to true, when ci+1 true. We
select the UNTIL condition among matching con-
ditions as the ui that maximizes the likelihood
of the trajectories in the equivalence class under
c
1
UNTIL u

1
AND NEXT … c

i
UNTIL u

i
AND NEXT TRUE , i.e. the

formula generated so far [Lines 21–24]. This pro-
cess allows us to select a condition that we know
is appropriate (belongs to input P), and that is the
most likely under the data. If there is no matching
condition, the algorithm adds the default UNTIL
condition — the HOLD operator or, if some
predicates were removed from the formula, tries
again with the original formula [Lines 25–29]. If
some trajectories have a conjunction representa-
tion shorter than the representation of the class,
the algorithm also adds an UNLESS operator after
the UNTIL operator, and searches for the UNLESS
condition in a similar way. If there are no match-
ing conditions in input P, FALSE is selected as the
condition so that to allow excessive planning and
prevent UNLESS to be met. This process models

477Computational Brain & Behavior (2022) 5:467–490

1 3

478 Computational Brain & Behavior (2022) 5:467–490

1 3

a situation when the formula allows early stop-
ping [Lines 29–40]. Having set the condition(s),
the generated LTL subformula is attached to the
formula built so far via the NEXT operator [Lines
42–44]. The algorithm then iterates [Line 15]. If
the last pair of conjunctions from the sequence
representing the equivalence class contains a con-
junction and a loop symbol, this symbol is trans-
formed into the LOOP operator (see Definition 7)
and the conjunction and the loop operator are
joined through the NEXT operator [Lines 15–20].
If there are demonstrations that end before the
loop, the UNLESS operator is added in the same
way as before [Line 19].

Step 4: After generating the procedural formulas for each
of the equivalence classes, the final procedural for-
mula is returned as a disjunction of these formulas
[Line 49]. Note, however, that only one of the ele-
ments in the disjunction is returned by DNF2LTL
after it performs pruning (see below).

Our algorithm captures a special type of procedural
formulas. For a DNF formula with only one conjunction,
the structure of the output can be described by the regular
expression

where P may be substituted with either of the input allowed
predicates or their 2-element disjunction, and Φ may be

(2)
[� Φ ∧ � | Φ � P (� P) ∧ �]+[� Φ | Φ � P | � P](� P)

substituted with an arbitrary conjunction of those predi-
cates. The expression given in Eq. 2 thus generates proce-
dural formulas in the form of a sequence of NEXT operators,
where subsequent conjunctions are separated with UNTIL
conditions (and/or UNLESS conditions) or accompanied by
the HOLD operator. The formula ends with the last NEXT
operator or with a LOOP operator.

Pruning

After our algorithm generates a procedural formula Ψ in the
first phase, it enters the second phase. During the second
phase, DNF2LTL prunes the predicates appearing in the
conjunctions of Ψ . Recall, however, Ψ is a disjunction of
procedural formulas. Because of this reason, pruning occurs
for each element of that disjunction separately. To do so,
DNF2LTL maps each procedural formula �i of the disjunc-
tion Ψ onto a distinct binary vector bi . Each element of bi
is the truth value of one of the predicates appearing in the
conjunctions making up psii . Our algorithm iterates over bi s
and in each step performs a greedy optimization. Concretely,
for each consecutive predicate of �i the corresponding entry
of bi is set to zero if and only if removing that predicate
increases the likelihood of the trajectories under the pruned
description relative to the unpruned description. Some predi-
cates increase the likelihood and are consequently pruned.
After performing this optimization for each bi (and �i), the
algorithm outputs the pruned �i for which the likelihood was
the highest as the final procedural description.

Fig. 7 AI-powered boosting with decision aids conveys automatically
found planning strategies through automatically generated procedural
instructions. Automation in the former area is achieved by modeling
the problem as a metalevel MDP and solving it with metalevel rein-
forcement learning. Automation in the latter area rests on (i) utilizing

an imitation learning algorithm AI-Interpret that constructs a DNF
formula of predefined predicates to describe the strategy, (ii) apply-
ing the DNF2LTL method that transforms the DNF into a formula in
LTL, (iii) translating the output into natural langauge using a prede-
fined predicate-to-expression dictionary

479Computational Brain & Behavior (2022) 5:467–490

1 3

Extending AI‑Powered Boosting to Procedural
Descriptions

Following the result on human preference toward procedural
descriptions of planning strategies, we extended the vanilla
AI-powered boosting method by adding our DNF2LTL algo-
rithm (see Fig. 7). Instead of generating static, flowchart
descriptions of optimal decision strategies, our extended ver-
sion performs AI-powered boosting with procedural descrip-
tions of optimal decision strategies. Originally, AI-powered
boosting models the decision problem theoretically, finds the
optimal policy for that model and relies on the AI-Interpret
algorithm to find a static description of this policy. Lastly,
it translates this description to natural language (see Sec-
tion 2.4). In the new version of AI-powered boosting, we
transform the description generated by AI-interpret into a
program-like procedural description of logical primitives
using DNF2LTL. We translate these descriptions into natural
language instructions only after this transformation. In total,
our new method comprises five steps: (1) modeling the plan-
ning problem, (2) finding the optimal strategy through that
model, (3) creating a description of that strategy in form of
a logical formula, (4) changing the formula to a procedural
formula, (5) translating the procedural formula to natural
language instructions.

To evaluate our extension of the general AI-powered
boosting method, we applied it to discover and teach the
optimal planning strategy for the three-step planning task
illustrated in Fig. 3. This planning task presents a version
of the Mouselab-MDP paradigm (see Section 2.2) created
by Lieder et al. (2019) where the variance of the possible
rewards is small in the first step (immediate consequences),
becomes slightly larger in the second step (short-term
consequences), and much larger in the third step (long-
term consequences). In this scenario, people often neglect
inspecting the long-term consequences of their actions (Jain
et al., 2021; Callaway et al., 2022b; Lieder et al., 2019). By
contrast, the optimal planning strategy for this environment
takes a far-sighted approach to decision-making that would
be beneficial in the real world. We hypothesized that our
extended AI-powered boosting approach may represent this
strategy in a number of more naturalistic decision problems,
and help people improve their decision-making therein.

In applying the extended AI-boosting method to new
problems, we completed steps 1 to 4 using the same meth-
odology and the same parameters as in Skirzyński et al.
(2021a), but focused specifically on the Mouselab-MDP
with increasing variance structure. In step 4 we selected
candidate predicates for the until and unless conditions
using the domain-specific language introduced in Skirzyński
et al. (2021a). In step 5 we adapted the predicate-dictionary
introduced in Skirzyński et al. (2021a) to work on proce-
dural descriptions and be domain-specific, depending on the

problem that AI-powered boosting is to provide decision
support on. Concretely, the procedural description is cre-
ated by separating the formula into steps, where each step
is a part of the formula between two NEXT operators (or
the part between the beginning of the formula and the first
NEXT operator or the part between the last NEXT operator
and the end of the formula). The steps are then separately
translated according to the alignment of LTL operators and
predicates in the step, using the mentioned domain-specific
dictionary. The whole description is returned as an enumera-
tion of those translations.

Concretely, each step is translated according to the fol-
lowing logic: if there is at least one non-negated predicate in
a step (other than TRUE), the translation always begins with
the template “ACT pred(OBJ, REW)”, where ACT is sub-
stituted with a domain-specific action word, and pred(OBJ,
REW) is substituted with a domain-specific translation of
predicate pred that contains OBJ as the object word rep-
resented by nodes in the Mouselab-MDP, and REW as the
reward word represented by numbers hidden underneath the
nodes. For instance, the action word could be “Look up”,
the object word could be “hotels”, the reward word could be
“the prices” and the predicate could capture the property of
being positioned in the last level from the start node of the
Mouselab-MDP. The translation would then read “look up
the prices of the most distant hotels”.

If there are any negated predicates in a step, they are
translated afterwards. The translations of those predicates
themselves are listed in bulletpoints following the template
“Do not ACT :”. Special predicates include the always TRUE
predicate, which is translated to “Stop planning right away
or ACT some random OBJ and then stop planning” (because
the available planning operations always include both click-
ing the nodes and terminating), and always FALSE predicate,
which is translated using the template “Do not ACT any-
thing” (because the always FALSE predicate appears in the
description only on its own — for the “no-action” strategy).

For the translation of the temporal operators, when a step
includes an UNTIL operator with condition cond(OBJ,
REW), the translation template becomes “Repeat this step
until cond(OBJ, REW)”. If there is an UNLESS operator
with condition cond(OBJ, REW) in a step, the translation
of the step starts with the text “Unless cond(OBJ, REW),
in which case stop at the previous step”. If the there is a
HOLD operator in a step, the translation of the step is added
the following text “Repeat this step as long as possible”.
Finally, if there is a LOOP operator with expression EXPR
in a step (which can only occur in the last step), the algo-
rithm matches the number of the step in which expression
EXPR appeared the latest, say NUM, and adds the template
“GOTO step NUM” to the translation. The exact translation
for the predicates in our DSL and the rules governing how

480 Computational Brain & Behavior (2022) 5:467–490

1 3

the steps are translated can be found in our project’s reposi-
tory in the translation.py file.

For our purposes, the final procedural formula we
obtained was

Although the above algorithm is carefully crafted and
depends on the character of the predicates included in the
step, it also contains a number of placeholders. Having filled
those placeholders with predicate or operator translations
from the domain-specific dictionary, it is possible to obtain
strategy descriptions that accommodate for other problems.
We treat Experiment 2 as a proof of concept that shows this
for one class of problems, and adapt the dictionary such
a way, as to have our method output instructions people
understand. In more detail, the specific dictionary we used
to transform this formula into task-dependent instructions
was informed by pilot studies in which we tested multiple
options and selected wording that resulted in the highest
overall compliance. These natural language instructions are
detailed in the next section, in which we assess the benefits
of conveying the found strategies in behavioral experiments.

Experiment 2: Boosting Human Performance
in Naturalistic Decision‑making
and Planning Tasks with AI‑Generated
Decision Aids

Our previous work (Skirzyński et al., 2021a) showed that
the static descriptions generated by AI-Interpret improve
the performance of individuals in the Mouselab-MDP task.
However, those improvements were lower in environments
which required more complex planning strategies. This was
partly due to the fact that static descriptions of complex
strategies are more difficult to understand. Experiment 1,
which in fact tested the interpretability of the most complex
strategy of Skirzyński et al. (2021a), showed that procedural
instructions are easier to understand than static descriptions.
In addition, the results of Experiment 1 suggest that our
updated decision aids come with additional benefits over
static descriptions. First, it takes less time to follow proce-
dural instructions than to use decision aids requiring you to
evaluate each planning step individually. Second, in con-
trast to static descriptions, procedural instructions require
no introduction on how to apply them.

Equipped with these improvements, we test in this section
whether decision aids generated by our extended AI-powered
boosting method can enhance human performance in tasks
that are more naturalistic than those used by Skirzyński et al.

(3)
among(not(is_observed, has_largest_depth) �

(are_leaves_observed ∨ is_previous_observed_max)

(2021a). Concretely, we evaluate our approach on two natu-
ralistic tasks. In the Road Trip task (Callaway et al., 2022b),
participants are asked to plan an inexpensive trip by look-
ing up hotel prices across cities visited during the trip (see
Fig. 2a). In the Mortgage task, participants are asked to
choose a mortgage based on the interest rates of the avail-
able options in the first year, the following five years, and the
following 15 years, respectively (see Fig. 2b). Similar to the
Mouselab-MDP task with increasing variance, the rewards
in the Road Trip task vary the most at the potential final
destinations. This reward structure favors far-sighted plan-
ning. This task allows us to test if AI-powered boosting can
help people become more far-sighted because previous work
found that human planning in this task is more short-sighted
than the optimal planning strategy (Callaway et al., 2022b).
The same is also true of the Mortgage task. We designed this
task so that the most long-term financial consequences of
choosing a mortgage are the most crucial for the total cost. It
can therefore be seen as a more naturalistic measure of peo-
ple’s shortsightedness in intertemporal choice (O’Donoghue
& Rabin, 2015; Meier & Sprenger, 2010).

To test the benefits of using our extended AI-powered
boosting approach, we conducted a large-scale online experi-
ment in which participants were presented with the Road
Trip task and the Mortgage task. To measure the benefits
conferred by our AI-generated decision aids, we compare the
performance of people being assisted by the automatically
generated decision aids that conveyed a far-sighted strategy
described in the previous section against the performance of
a control group making decisions without a decision aid. We
did not include a condition with static instructions because
Experiment 1 conclusively showed that static instructions are
less effective than procedural instructions. In Experiment 2,
we also overcome the main limitation of Experiment 1 by
studying how beneficial AI-powered boosting might be in
real-world settings where people can choose to ignore the
decision aid. Thus, instead of requiring participants to com-
ply with the recommended strategy, Experiment 2 provides
people with a decision aid and allows participants to freely
decide how they want to make their decisions.

Methods

Participants

We recruited 111 people on Prolific. The mean duration of
the experiment was 18.1 min in the control condition and
17.9 in the experimental condition. We excluded 2 par-
ticipants (1.8%; both in the experimental condition) who
needed more than 3 quiz attempts in one of the two quizzes.
This yielded 54 participants for the control condition (aver-
age age: 38.0 years, range: 19–74 years; 39 female) and 55

481Computational Brain & Behavior (2022) 5:467–490

1 3

participants for the experimental condition (average age:
35.6 years, range: 18–70 years; 37 female).

Tasks

Participants were engaged in two different planning tasks.
The Road Trip task (see Fig. 2a) asked people to plan a
route from a starting location to one of multiple airport cit-
ies. Each city on the route requires the traveler to rent a
hotel for the night. The participant’s task was to efficiently
find a route with low accommodation costs. To do so, the
participant could look up the price of the cheapest hotel in
a city for a $10 fee by typing the city name into a search
engine. Hotel prices were drawn from a uniform distribution
over the values {$30, $35, $40, $45} and airport hotel prices
were drawn from a uniform distribution over the values
{$260, $290, $320, $350, $380} . In addition, one randomly
selected airport city offered a price of only $20. A route
could be submitted after selecting a sequence of roads con-
necting the start city with an airport city.

The Mortgage task (see Fig. 2b) asked people to choose
the cheapest mortgage out of three options presented in a
table. Each mortgage was defined by three different interest
rates: the interest rate for the fist year (2022), the interest
rate for the following 5 years (2023–2027) and the interest
rate for the 25 years after that (2028–2052). Three different
mortgages were presented: 1. A mortgage whose interest
rates increased over time. The interest rates were drawn from
normal distributions with means 0.5%, 1.5% and 2.5% for
the three time periods, respectively. 2. A mortgage whose
interest rates stayed constant over time. The interest rates
were drawn from a normal distribution with mean 1.5% for
all three time periods. 3. A mortgage whose interest rates
decreased over time. The interest rates were drawn from nor-
mal distributions with means 2.5%, 1.5% and 0.5% and for
the three time periods, respectively. All distributions had a
standard deviation of 0.44%. The minimum value of an inter-
est rate was set to 0. The mortgage with decreasing interest
rates offered the lowest overall interest rate payments and
thus represented the best choice. Participants could reveal
up to three different interest rates for no fee by clicking on
the corresponding table cell. At each point in the task, the
participant could decide for one mortgage plan and proceed
to the next trial.

Outcome Measures

We quantified far-sightedness by examining which infor-
mation participants gathered in what order. We defined
far-sighted planning as gathering information about the
most long-term consequences first (i.e., the prices in air-
port cities in the Road Trip task and the interest rate for the
last 25 years in the Mortgage task). We therefore measured

far-sightedness by the proportion of such far-sighted plan-
ning operations among the first k planning operations, where
k denotes the number of pieces of information that are avail-
able about the most long-term consequences. We call this
measure the far-sightedness quotient (FSQ). For example,
consider a Road Trip trial that includes two possible final
destinations: Choosing these two final destinations in the
first 2 clicks results in an FSQ of 1. Choosing one final des-
tination and one stopover in the first two clicks results in an
FSQ of 0.5. If a person performed fewer planning operations
than there were far-sighted planning options, k was reduced
to the number of performed planning operations. The values
are reported as percentages.

We utilized the click agreement metric from Experi-
ment 1 (see Section 3.1.2) to capture how well participants
applied the far-sighted planning strategy recommended by
the AI-generated decision aid. Whether a performed plan-
ning operation is consistent with the far-sighted planning
strategy depends on the strategy’s stopping rule. The far-
sighted planning strategy stops planning if it encounters the
best possible long-term outcome, which is given by a hotel
price of $20 in the Road Trip task and by an interest of 0%
in the Mortgage task.

In addition, we quantified participants’ planning success.
In the Road Trip task was measured the score per trial which
was defined as the sum of lookup fees and route costs sub-
tracted from the initial budget of $500. In the Mortgage task,
we measured participants’ performance by whether they
selected the mortgage plan with decreasing interest rates
because its total cost was always the lowest.

Procedure

Participants were randomly divided into an experimental
group and a control group. Each condition consisted of
a Mortgage task block and a Road Trip task block, and a
final demographic survey. The order in which the two task
blocks were presented was randomized across participants.
Both task blocks opened with instructions on the task (see
Appendix 3), followed by a multiple-choice quiz on the task,
an additional instructions page displayed only in the experi-
mental condition (see Appendix 3), and eight trials of the
actual task. The instructions of the Road Trip task explicitly
stated that there is always a hotel in one of the airport cit-
ies with a rate of only $20 per night. Participants received
a bonus of 2 pence for every 100 points scored in the Road
Trip task, or 5 pence per point scored in the Mortgage task.
Additionally, everyone received a base payment of £1.5. In
the experimental condition, participants were assisted by our
AI-generated decision aids. These decision aids were intro-
duced as “Advice for scoring a high bonus” on the additional
instructions page. Participants were told that the decision

482 Computational Brain & Behavior (2022) 5:467–490

1 3

aids convey a near-optimal strategy for gathering informa-
tion to arrive at a good decision. Participants were asked
to try to understand the advice of the decision aid and how
it can be applied to the task at hand. In addition, the AI-
generated decision aids were displayed in the task trials at
the top in red font with the note: “Advice to achieve a high
bonus” (see Fig. 8a and b).

As described above, the AI-generated decision aids com-
prised procedural instructions for how to reach a decision.
The procedural instructions for the Mortgage task were
“Click the most long-term interest rates that you have not
clicked yet. Repeat this step until all the long-term interest
rates are clicked or you have encountered the lowest possible
interest rate.” The procedural instructions for the Road Trip
task were “Look up the prices of the most distant hotels that

you have not looked up yet. Repeat this step until all the
distant hotels’ prices are looked up or you have encountered
the lowest possible hotel price.”

Analysis

We performed one-sided Mann-Whitney-U tests for group
level comparisons according to our hypotheses that the
experimental group would plan more far-sightedly and score
higher than the control group. The study was pre-registered.3

Fig. 8 Experiment 2: The Road
Trip task (a) and the Mortgage
task (b) with corresponding
AI-generated decision aids as
presented to the experimental
condition. Only participants in
the experimental condition were
assisted with decision aids

3 https:// aspre dicted. org/ JRD_ D7Z

483Computational Brain & Behavior (2022) 5:467–490

https://aspredicted.org/JRD_D7Z

1 3

Results

As illustrated in Fig. 9a and b, the experimental group
planned significantly more far-sightedly than the control
group in both tasks (Road Trip task: A = .75 ; U=741,
p=<.001, Mortgage task: A = .78 ; U=658, p=<.001). In
the Mortgage task, the automatically generated decision aid
increased participants’ average FSQ from 50.8% in the con-
trol condition to 83.3% in the experimental condition (medi-
ans: 47.6% vs. 100%). In the Road Trip task, the AI-gener-
ated decision aid increased the average FSQ from 35.1% in
the control condition to 63.8% in the experimental condition
(medians: 32.3% vs. 75%). In a follow-up analysis, we found
that participants who had encountered the minimum airport
price in one trial of the Road Trip task planned significantly

more far-sightedly in the following trial compared to trials in
which participants had not encountered the minimum airport
price in the previous trial (FSQ: 74.7% vs. 23.2%; A = .68 ;
U=3203, p=<.001).

The positive effect of AI-generated decision aids was also
evident in participants’ click agreement with the instructed
strategy. Participants in the experimental group showed
significantly higher click agreement than the control group
in both tasks (Road Trip task: A = .72 ; U=838, p=<.001,
Mortgage task: A = .78 ; U=659, p=<.001). In the Road Trip
task, the average click agreement was 27.9% in the control
condition and 49.8% in the experimental condition (medi-
ans: 26.5% vs. 53.1%; see Fig. 9d). In the Mortgage task,
the stopping rule of the recommended strategy was never
met; thus the mean click agreement only differed from the

Fig. 9 Results of Experiment
2. The decision aids gener-
ated by our AI method boosted
participants far-sightedness
and performance in the Road
Trip and Mortgage task. The
experimental group was aided
by the procedural instructions
generated by our computa-
tional method. All differences
are statistically significant (all
p ≤ .01). Panels a and b: The
experimental group planned
more far-sighted than the con-
trol group. Panels c and d: The
experimental group achieved
higher click agreements than
the control group. Panels e and
f: Performance in both tasks
was measured according to each
task’s objective. Higher scores
mean better performance

0%

25%

50%

75%

100%

control supported by
 decision aid

M
ea

n
FS

Q

Far−sightedness in the
 Mortgage task

a

0%

25%

50%

75%

100%

control supported by
 decision aid

M
ea

n
FS

Q

Far−sightedness in the
 Road Trip task

b

0%

25%

50%

75%

100%

control supported by
 decision aid

M
ea

n
C

lic
k

Ag
re

em
en

t

Click agreement in the
 Mortgage task

c

0%

25%

50%

75%

100%

control supported by
 decision aid

M
ea

n
C

lic
k

Ag
re

em
en

t

Click agreement in the
 Road Trip task

d

0%

25%

50%

75%

100%

control supported by
 decision aid

O
pt

im
al

 c
ho

ic
es

Performance in the
 Mortgage task

e

100

200

300

control supported by
 decision aid

M
ea

n
sc

or
e

Performance in the
 Road Trip task

f

484 Computational Brain & Behavior (2022) 5:467–490

1 3

FSQ in the sense that it penalized not clicking all long-term
options available. This was rarely the case; hence the click
agreement was similar to the FSQ (control condition: 50.4%;
experimental condition: 82.9% see Fig. 9c).

Furthermore, we found that the AI-generated decision
aid significantly boosted participants’ performance in both
tasks (Road Trip task: A = .66 ; U=994, p=.001, Mortgage
task: A = .78 ; U=654, p=<.001). On average a participant in
the control condition selected the cheapest mortgage in only
46.8% of trials (median: 40.2%); by contrast participants in
the experimental condition selected the cheapest mortgage
80.7% of the time (median: 87.5%; see Fig. 9e). In the Road
Trip task, the AI-generated decision aid increased the par-
ticipants’ score from 237.4 points in the control condition
(median: 252.3) to 276.3 points in the experimental condi-
tion (median: 300.6; see Fig. 9f).

Finally, we inspected how participants reached their deci-
sions when they deviated from the recommended strategy.
To do so, we averaged the frequency of the most common
ways in which participants deviated from the optimal strat-
egy across the two tasks. Out of every trial in which partici-
pants did not follow the recommended strategy, 21.1% of the
trials involved no clicks at all, in 35% of trials participants
started by inspecting an immediate outcome, in 12.5% of
trials participants started by clicking on an intermediate out-
come, and in 31.4% of trials participants started by inspect-
ing a final outcome but then deviated from the optimal strat-
egy in a later step. Two thirds of the time, the latter deviation
already occurred in the second click.

Discussion and Conclusion

In this work, we developed a new approach to boost-
ing human decision-making. While most previous work
designed decision aids by hand, we extended a computa-
tional method that uses AI to generate decision aids auto-
matically. Our method discovers and describes near-optimal
strategies for human decision-making. The main technical
contribution of this article was to develop an algorithm for
transforming disjunctive normal form descriptions of plan-
ning strategies into procedural instructions for good deci-
sion-making that are easy to understand.

The results of Experiment 1 suggested that people can
understand the kind of procedural instructions generated by
our new method faster and follow the strategy more accu-
rately than when it was conveyed by the decision aids gen-
erated by our previous method (Skirzyński et al., 2021a).
Moreover, we demonstrated that the decision aids generated
by our new method can improve human decision-making
in two naturalistic tasks: planning a road trip and choos-
ing a mortgage. Our AI-generated decision aids improved
the process and outcomes of people’s decision-making in

both tasks. This happened despite the fact people had the
freedom to use their own decision strategy for those tasks.
Presumably, people used the strategies hinted by our deci-
sion aid since they believed that it would be beneficial for
them. To the best of our knowledge, this is the first demon-
stration that human decision-making in naturalistic tasks can
be improved in this way by AI-generated natural language
descriptions of near-optimal decision strategies.

Together, the two major components of our AI-powered
boosting method, that is AI-Interpret and DNF2LTL, give
rise to a new algorithm for explainable reinforcement learn-
ing that can create descriptions of virtually any learned
policy (Puiutta & Veith, 2020; Dazeley et al., 2021). Our
experiments indicated that this new algorithm generates
syntactically interpretable descriptions, that when translated
into natural language, facilitate people’s trust. People fol-
lowed the policy and planned far-sightedly in Experiment 2
after only being presented with the output of AI-powered
boosting as a decision aid they could use or ignore. Future
work on explainable reinforcement learning should aim
to test this new algorithm on a wider range of tasks and
environments.

The goal of this article was to develop a method for
improving human decision-making. We therefore evaluated
our overall approach by whether and to which extent the
resulting decision aids leads to better decisions. This metric
depends on how much better the resource-rational strategy
for a given decision problem is than people’s intuitive strat-
egy, the method used to discover the resource-rational strat-
egy, and how accurately the automatically generated natural
language description captures the essence of the discovered
strategy. Each of those components can be assessed sepa-
rately. For an in-depth evaluation of how accurately the natu-
ral language instructions generated by our method describe
the different decision strategies, please see Skirzyński et al.
(2021b).

Our experiments demonstrate that the decision aid
boosted people’s performance in the assisted decisions by
guiding them through the process of executing a resource-
rational decision strategy. This strategy ensured that par-
ticipants considered the most important consequences of
the actions they were choosing between. It thereby guided
them to utilize crucial information that they might not have
seen otherwise. In principle, this improvement might have
occurred solely because the participant blindly followed
the instructions of the decision aid. However, it is also con-
ceivable that practicing good decision-making with a deci-
sion aid improves people’s decision-making competency.
Concretely, people’s decision-making competence might
improve because they internalize the described decision
strategy through repetition or because they gain insights into
the logic of the conveyed strategy and why it is adaptive. If
that were the case, then they might also use the conveyed

485Computational Brain & Behavior (2022) 5:467–490

1 3

strategy in future decisions they make without the decision
aid. In that case, our decision aid would have boosted not
just their performance in the task, but also their decision-
making competence. Given that people can learn and trans-
fer adaptive decision strategies through practice (Callaway
et al., 2022a; He et al., 2021; He & Lieder, 2022), repeatedly
using our decision aids might indeed have led to learning-
induced improvements in their decision-making competency.
Testing whether such learning occurs is an important direc-
tion for future research.

Whether our decision aid boosted people’s decision-mak-
ing competence is closely related to the question of why and
how its provision improved people’s decisions. There are at
least two possible mechanisms: insight versus compliance.
According to the first hypothesis (i.e., insight), the deci-
sion aid helped people gain insights into the logic of good
decision-making that they then autonomously applied to
improve their performance. Concretely, people might try out
the recommended strategy because they have some level of
trust in such recommendations. Because the recommended
strategy is highly adaptive, the experienced outcomes will
likely convince the participants that using the strategy is
beneficial for them. Moreover, they might realize that the
far-sighted strategy is adaptive because the final outcomes
are more variable than earlier outcomes (insight). Based on
that, they might then choose to continue using the strategy
because they conclude that it works well and makes sense.
According to the second hypothesis, participants interpreted
the decision aid as a series of orders that they felt obliged
to follow. Moreover, participants might have followed those
instructions without understanding why they make any
sense. We think that the most extreme version of this inter-
pretation is unlikely because Experiment 2 emphasized the
participants’ autonomy by framing the decision aid as advice
(see Fig. 8). However, participants often comply with what
they perceive to be the experimenter’s implicit expectations,
regardless of what the experimenter’s actual intent is Orne
(1996). Moreover, our experiments were not designed to
distinguish between the two interpretations. Therefore, the
mechanism through which the observed improvements were
attained remains unclear. To address this important question,
future studies should measure why participants followed the
recommended strategy and test participants’ understanding
of the logic behind the recommended strategy and why it is
effective. Based on existing measures of autonomous moti-
vation (Sheldon et al., 2004), future studies could measure
why participants followed the recommended strategy by ask-
ing them to rate to which extent they followed the strategy
because they felt that it was required or expected of them and
to separately rate to which extent they followed it because it
made sense to them and because they thought it was a good
strategy.

Since we designed our algorithm for generating natural
language descriptions of decisions strategies with a particu-
lar class of problems in mind and only tested it on those
problems, it remains unclear how well it would work for
other kinds of decision problems. The principles are general
enough that they are applicable to a wide range of decision
problems. However, the dictionary is application-specific,
and the implementation uses heuristics that probably will not
work well for all possible applications. Therefore, depending
on how different future applications will be from the ones we
tackled in this article, our method will require some amount
of adaptation. Nevertheless, our work provides a proof of
concept that it is possible to discover and describe rational
decision strategies automatically. Developing a more princi-
pled and more general translation algorithm is an important
direction for future work.

Based on our positive findings on improving people’s
decision-making, we believe that future research should
focus on even more realistic tasks and decision support in
the real world. In this work, we found that the near-opti-
mal decision strategy that the automatic strategy discovery
method (Callaway et al., 2022a; Skirzyński et al., 2021a)
discovered for a simple Mouselab-MDP task (see Fig. 3)
could be automatically translated into effective decision
aids for two more complex and more naturalistic tasks (see
Fig. 2). This worked not only for the Road Trip task that is
structurally similar to the Mouselab-MDP task, but also for
the problem of choosing a mortgage that is analogous to
the Mouselab-MDP task at a more abstract level. This sug-
gests that our method is, in principle, applicable to a wide
range of decision problems people face in the real world
as long as the essential structure of those problems can be
modeled within our general metalevel MDP framework
(Griffiths et al., 2019; Callaway et al., 2022b; a). We have
previously argued that this is the case for a wide range of
common real-world decisions, such as purchasing decisions,
hiring choices, investment decisions, deciding which char-
ity to donate to, medical diagnosis, treatment planning, and
credit approval decisions (Mehta et al., 2022; Skirzyński
et al., 2021a; Consul et al., 2022; Callaway et al., 2022a).

Applying our approach to such real-world problems requires
building models of real-world decisions. Developing such
models generally requires making evidence-based assumptions
about the structure of the real world. Our knowledge of the
real-world problems in which people have to make decisions
are inevitably uncertain, sometimes inaccurate, and usually
incomplete (Hertwig et al., 2019). However, our approach does
not require that all of those assumptions are correct. To the
contrary, the methods described here can be combined with
recent advances that have made strategy discovery methods
robust to errors in the model of the decision problems to be
solved (Mehta et al., 2022). Moreover, our strategy discov-
ery methods can also be extended to environments where the

486 Computational Brain & Behavior (2022) 5:467–490

1 3

true state of affairs is unknown because it cannot be observed
directly (Heindrich et al., 2022). In practice, the applicability
of our method also depends on the size of the model. However,
technical advances in machine learning methods for automatic
strategy discovery are making our approach increasingly more
scalable (Consul et al., 2022). Regardless thereof, making AI-
powered boosting work in the real world remains a difficult
challenge. Whether future work will be able to overcome the
remaining difficulties remains to be seen, but the results pre-
sented in this article make us cautiously optimistic.

Appendix 1. Experiment 1: Task instructions

Experiment 1 consisted of a condition that was assisted
by static descriptions (flowchart) and a condition that was
assisted by procedural instructions. To inform participants
how to use the static descriptions in the task at hand, we used
the following instructions:

“Flowchart: The description of the strategy takes the form
of a flowchart. It walks you through a list of one or more
questions that you need to answer to by looking at the tree,
and describes which nodes to click. Look at the image below
to see how a flowchart can look like. Task procedure: 1.
Read the flowchart carefully. 2. Think of a node you would
like to click 3. Go through the flowchart and answer ques-
tions about that node. 4. Click that node if the flowchart
landed you in a “Click it” decision. Otherwise, think of a
different node. 5. Once you are sure that you clicked all
the nodes the flowchart allows clicking — that is it would
evaluate to “Don’t click it” for every node — click Next to
advance to the next trial.”

To inform participants how to use the procedural instruc-
tions in the task at hand, we used the following instructions:

“Instructions: The description of the strategy is conveyed
as a sequence of instructions. The instructions tell you what
to click step by step. Look at the image below to see how
a sequence of instructions can look like. Task procedure
To enact the strategy conveyed by the instructions, do the

following: 1. Read the instructions carefully. 2. Click the
nodes by following the procedure described in the instruc-
tions. 3. Once there are no more nodes the instructions allow
clicking, click Next to advance to the next trial.”

Appendix 2. Experiment 1: Development
of click agreement over time

The development of click agreement over time is illus-
trated in Fig. 10a. A linear regression model found that
the click agreement in the static descriptions condition
kept stable over time (� = 0.002, p = .66), whereas it sig-
nificantly increased in the procedural instructions condi-
tion (� = 0.013, p = .002), suggesting that the procedural
instructions condition learned to apply the instructed
strategy more precisely over time. Further, we found
that the expected score (see Fig. 10b) did not systemati-
cally change over time in the static descriptions condition
(� = 0.152, p = .487) and in procedural descriptions con-
dition (� = −0.038, p = .87). Lastly, we found that the fit-
ted intercepts did not significantly differ between condi-
tions (click agreement: � = 0.1, p = .198 ; expected score:
� = 2.1, p = .279), indicating that there were no differences
in the initial understanding of the task between conditions.

Appendix 3. Experiment 2: Task instructions

These were the instructions on the Road Trip Task: “In the
Travel Planner game, you pretend to be a travel planner.
You start by seeing a map as shown below. Your client
needs to travel from the city with the car (Ruby Ridge) to
one of the cities with an airport. Getting from city A to
city B is only possible when there is an arrow from city
A to city B. Your client can travel only one city per day.
During the night, he or she stays in a hotel, which costs
money. Your client wants a morning flight, so they must

Fig. 10 Experiment 1: a Pro-
cedural instructions are more
interpretable than flowcharts.
The plot shows the mean click
agreement of participants per
condition as a function of
trial. Click agreement with the
instructed clicking strategy
was measured as the propor-
tion of consistent clicks out
of all performed clicks. b The
mean expected score that per
condition as a function of trial.
The shaded areas mark the 95%
confidence intervals

60%

80%

100%

1 3 5 7 9
Trial

M
ea

n
cl

ic
k

ag
re

em
en

t

static
descriptions

procedural
instructions

a

0

5

10

1 3 5 7 9
Trial

M
ea

n
ex

pe
ct

ed
 s

co
re

static
descriptions

procedural
instructions

b

487Computational Brain & Behavior (2022) 5:467–490

1 3

pay for a hotel in the airport city as well. The price of the
hotel varies between the different cities. Airport hotels
start at $20.Your client is on a tight budget of $500 and
wishes to take the cheapest route. Your goal is to choose
which cities to traverse so that the price of the trip was as
cheap as possible. You can look up the price of the cheap-
est hotel in a city by typing the city name in a text box and
clicking Reveal. The prices are negative to convey the cost
you will incur by staying in the city.When you look up a
city, its price is revealed on the map. Revealing the price
costs $10. At any time, you can select parts of the client’s
route by clicking on the arrows. If you change your mind,
you can unselect arrows by clicking them again. When
you have finalized your route, click Submit. You do not
need to check the prices of every city on the route before
submitting.”

In addition, the experimental group received this informa-
tion: “Advice for scoring a high bonus: To help you score
higher in the roadtrip planner game, we will show you its
near-optimal strategy. This strategy describes in what order
to explore the hotel prices. Please take a moment to under-
stand this advice and how you could apply it in the game.
Look up the prices of the most distant hotels that you have
not looked up yet. Repeat this step until all the distant hotels’
prices are looked up or you have encountered the lowest
possible hotel price.”

These were the instructions on the Mortgage task: “In the
Mortgage game, you have found your dream property and
want to ask the bank for a loan. The bank presents you with
three different mortgage plans. Each mortgage plan has three
different interest rates: One for the 1st year (2022), one for
the 2nd until 5th year (2023–2027) and one for the 6th until
30th year (2028–2052). Unfortunately, the bank clerk forgot
to tell you about the interest rates. In the example below,
you can see three plans (Mortgage plan A, Mortgage plan
B, Mortgage plan C) but their corresponding interest rates
are hidden underneath the blue fields. You decide to call the
bank to ask about the interest rates. However, the bank clerk
only has time to tell you up to three interest rates. Each time
a bank clerk tells you about the interest rate corresponds
to one click. That means you can only click up to 3 times.
Below you will see an example with one field revealed. In
the example, the interest rate from 2023 to 2027 for mort-
gage plan B was revealed. In the example, you would have to
pay 1.61% interest rate in each of the 4 years when you select
mortgage plan B. You can click up to 3 times, after which
you have to make a decision which mortgage plan to choose.
You can select a mortgage plan at any time by clicking on
the grey mortgage plan button (A, B or C).”

In addition, the experimental group received this informa-
tion: “Advice for scoring a high bonus: To help you score
higher in the mortgage game, we will show you its near-
optimal strategy. This strategy describes in what order to

Fig. 11 Experiment 2: The
experimental group (red) was
supported by our decision aid
whereas the control group (blue)
was not. (a) The plot shows the
average far-sightedness quotient
as a function of trial per condi-
tion for the Mortgage task. b
The plot shows the average far-
sightedness quotient as a func-
tion of trial per condition for
the Road Trip task. c The plot
shows the proportion of optimal
choices as a function of trial per
condition for the Mortgage task.
d The plot shows the average
score as a function of trial per
condition for the Road Trip
task. The shaded areas mark the
95% confidence intervals

25%

50%

75%

100%

1 2 3 4 5 6 7 8
Trial

M
ea

n
FS

Q

Far−sightedness in
the Mortgage task

a

25%

50%

75%

100%

1 2 3 4 5 6 7 8
Trial

M
ea

n
FS

Q

Far−sightedness in
the Road Trip task

b

20%

40%

60%

80%

1 2 3 4 5 6 7 8
Trial

O
pt

im
al

 C
ho

ic
es

Performance in
the Mortgage task

c

200

250

300

1 2 3 4 5 6 7 8
Trial

M
ea

n
Sc

or
e

Performance in
the Road Trip task

d

488 Computational Brain & Behavior (2022) 5:467–490

1 3

explore the interest rates. Please take a moment to under-
stand this advice and how you could apply it in the game:
Click the most long-term interest rates that you have not
clicked yet. Repeat this step until all the long-term interest
rates are clicked, or you have encountered the lowest pos-
sible interest rate.”

Appendix 4. Experiment 2: Development
of FSQ over time

In an exploratory analysis, we regressed the participant’s
FSQ in each task on the predictors decision aid and trial
number and their interaction. We found that the intercept
was significantly larger in the experimental condition than
in the control condition in both tasks (Mortgage task:
𝛽 = 0.35, p < .001 ; Road Trip task: 𝛽 = 0.31, p < .001),
suggesting that the provision of the decision aid led to an
immediate improvement in far-sightedness. As illustrated
in Fig. 11, we found that in the Mortgage task the FSQ
kept stable over time (trial number: � = 0.01, p = .075),
whereas we found that the FSQ increased over time in
the Road Trip task (trial number: 𝛽 = 0.03, p < .001). The
interaction of trial number and decision aid was insig-
nificant for both tasks (Mortgage task: � = 0.00, p = .266 ;
Road Trip task: � = 0.00, p = .357), indicating that the
presence of the decision aid did not limit the learning.

Appendix 5. Experiment 2: Development
of performance over time

In addition, we regressed the participants’ performance in
each task on the predictors decision aid and trial number
and their interaction. We found that the intercept was sig-
nificantly larger in the decision aid condition than in the
no aid condition in the Mortgage task, but not in the Road
Trip task (Mortgage task: 𝛽 = 2.5, p < .001 ; Road Trip
task: � = 29.4, p = .1). As illustrated in Fig. 11c, we found
that in the Mortgage task, the number of optimal choices
increased over time (trial number: � = 0.12, p = .034). As
illustrated in Fig. 11d, we found that in the Road Trip
task the score increased over time, however not signifi-
cantly (trial number: � = 4.7, p = .068). The interaction
of trial number and decision aid was insignificant for both
tasks (Mortgage task: � = −0.02, p = .785 ; Road Trip task:
� = 2.3, p = .509).

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was supported by the German Federal Minis-
try of Education and Research (BMBF): Tübingen AI Center, FKZ:
01IS18039B. This work was additionally supported by the Cyber Val-
ley Research Fund (CyVy-RF-2019-02).

Availability of Data and Material (Data Transparency) The datasets ana-
lyzed for this study, alongside the code for the analysis can be found
at https:// github. com/ Ratio nalit yEnha nceme nt/ Inter preta bleSt rateg
yDisc overy.

Code Availability (Software Application or Custom Code) The code for
the algorithm introduced in the paper is available at https:// github. com/
Ratio nalit yEnha nceme nt/ Inter preta bleSt rateg yDisc overy/ tree/ master/
DNF2L TL.

Declarations

Ethics Approval The experiments reported in this article were approved
by the IEC of the University of Tübingen under IRB protocol number
667/2018BO2 (“Online-Experimente über das Erlernen von Entschei-
dungsstrategien”).

Consent to Participate All participants gave their informed consent
before starting the experiments.

Consent for Publication All authors consent to the publication of this
manuscript.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Becker, F., Skirzyński, J., van Opheusden, B., & Lieder, F. (2021).
Encouraging far-sightedness with automatically generated
descriptions of optimal planning strategies: Potentials and limi-
tations. In: Proceedings of the annual meeting of the cognitive
science society (vol. 43)

Callaway, F., Lieder, F., Krueger, P.M., & Griffiths, T.L. (2017). Mou-
selab-MDP: A new paradigm for tracing how people plan. In: The
3rd multidisciplinary conference on reinforcement learning and
decision making. Ann Arbor, MI

Callaway, F., Gul, S., Krueger, P., Griffiths, T.L., & Lieder, F. (2018a).
Learning to select computations. In: Uncertainty in artificial intel-
ligence: Proceedings of the thirty-fourth conference

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P.M., Griffiths, T.
(2018b). A resource-rational analysis of human planning. In:
CogSci

Callaway, F., Jain, Y. R., van Opheusden, B., Das, P., Iwama, G., Gul,
S., et al. (2022). Leveraging artificial intelligence to improve peo-
ple’s planning strategies. Proceedings of the National Academy of
Sciences, 119(12), e2117432119.

489Computational Brain & Behavior (2022) 5:467–490

https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery
https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery
https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery/tree/master/DNF2LTL
https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery/tree/master/DNF2LTL
https://github.com/RationalityEnhancement/InterpretableStrategyDiscovery/tree/master/DNF2LTL
http://creativecommons.org/licenses/by/4.0/

1 3

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P., Lieder,
F., & Griffiths, T. (2022b). Rational use of cognitive resources in
human planning. Nature Human Behavior

Consul, S., Heindrich, L., Stojcheski, J., & Lieder, F. (2022). Improv-
ing human decision-making by discovering efficient strategies for
hierarchical planning. Computational Brain & Behavior, 5(2),
185–216.

Dazeley, R., Vamplew, P., & Cruz, F. (2021). Explainable reinforce-
ment learning for broad-xai: a conceptual framework and survey.
arXiv: 2108. 09003

Gigerenzer, G. (1991). How to make cognitive illusions disappear:
Beyond “heuristics and biases’’. European Review of Social Psy-
chology, 2(1), 83–115.

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us
smart. USA: Oxford University Press.

Gigerenzer, G., Hertwig, R., Hoffrage, U., & Sedlmeier, P. (2008).
Cognitive illusions reconsidered. Handbook of Experimental Eco-
nomics Results, 1, 1018–1034.

Gilovich, T., Griffin, D., Kahneman, D., et al. (2002). Heuristics and
biases: The psychology of intuitive judgment. Cambridge: Cam-
bridge University Press.

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P.
M., & Lieder, F. (2019). Doing more with less: meta-reasoning
and meta-learning in humans and machines. Current Opinion in
Behavioral Sciences, 29, 24–30.

Hafenbrädl, S., Waeger, D., Marewski, J. N., & Gigerenzer, G. (2016).
Applied decision making with fast-and-frugal heuristics. Journal
of Applied Research in Memory and Cognition, 5(2), 215–231.

He, R., & Lieder, F. (2022). Where do adaptive planning strategies
come from? https:// doi. org/ 10. 13140/ RG.2. 2. 28966. 60487, manu-
script submitted for publication.

He, R., Jain, Y.R., & Lieder, F. (2021). Measuring and modelling how
people learn how to plan and how people adapt their planning
strategies the to structure of the environment. In: International
conference on cognitive modeling. Retrieved from https:// re. is.
mpg. de/ uploa ds_ file/ attac hment/ attac hment/ 671/ 20210 720_
ICCM_ submi ssion_ final. pdf. Accessed 5 Sep 2022

Heindrich, L., Consul, S., & Lieder, F. (2022). Leveraging ai to
improve human planning in large partially observable environ-
ments. Manuscript submitted for publication

Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steer-
ing or empowering good decisions. Perspectives on Psychological
Science, 12(6), 973–986.

Hertwig, R., Pleskac, T. J., & Pachur, T. (2019). Taming uncertainty.
Cambridge: MIT Press.

Jain, Y.R., Callaway, F., Griffiths, T.L., Dayan, P., Krueger, P.M., &
Lieder, F. (2021). A computational process-tracing method for
measuring people’s planning strategies and how they change over
time. Manuscript in revision

Kinnier, R. T., & Metha, A. T. (1989). Regrets and priorities at three
stages of life. Counseling and Values, 33(3), 182–193.

Larrick, R.P. (2004). Debiasing. Blackwell handbook of judgment and
decision making pp 316–338

Lieder, F., & Griffiths, T. L. (2017). Strategy selection as rational
metareasoning. Psychological Review, 124(6), 762.

Lieder, F., & Griffiths, T.L. (2020a). Advancing rational analysis to the
algorithmic level. Behavioral and Brain Sciences, 43

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: under-
standing human cognition as the optimal use of limited computa-
tional resources. Behavioral and Brain Sciences, 3, 1–85.

Lieder, F., Krueger, P.M., & Griffiths, T. (2017). An automatic method
for discovering rational heuristics for risky choice. In: CogSci

Lieder, F., Callaway, F., Jain, Y.R., Krueger, P.M., Das, P., Gul, S., &
Griffiths, T. (2019). A cognitive tutor for helping people over-
come present bias. In: The fourth multidisciplinary conference

on reinforcement learning and decision making. * These authors
contributed equally

Mehta, A., Jain, Y.R., Kemtur, A., Stojcheski, J., Consul, S., Tošic, M.,
& Lieder, F. (2022). Leveraging machine learning to automatically
derive robust decision strategies from imperfect knowledge of the
real world. Computational Brain & Behavior

Meier, S., & Sprenger, C. (2010). Present-biased preferences and credit
card borrowing. American Economic Journal: Applied Econom-
ics, 2(1), 193–210.

Milkman, K. L., Rogers, T., & Bazerman, M. H. (2008). Harnessing
our inner angels and demons: What we have learned about want/
should conflicts and how that knowledge can help us reduce short-
sighted decision making. Perspectives on Psychological Science,
3(4), 324–338.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the
structure of behavior. Henry Holt and Co. https:// doi. org/ 10. 1037/
10039- 000

O’Donoghue, T., & Rabin, M. (2015). Present bias: Lessons learned
and to be learned. American Economic Review, 105(5), 273–79.

Orne, M.T. (1996). Demand characteristics. In: Introducing psychologi-
cal research (pp. 395–401). Springer

Phillips, N. D., Neth, H., Woike, J. K., & Gaissmaier, W. (2017).
FFTrees: A toolbox to create, visualize, and evaluate fast-and-
frugal decision trees. Judgment and Decision making, 12(4),
344–368.

Puiutta, E., & Veith, E. (2020). Explainable reinforcement learning:
A survey. In: International cross-domain conference for machine
learning and knowledge extraction (pp. 77–95). Springer

Reeck, C., Wall, D., & Johnson, E. J. (2017). Search predicts and
changes patience in intertemporal choice. Proceedings of the
National Academy of Sciences, 114(45), 11890–11895.

Rich, P., Blokpoel, M., de Haan, R., & van Rooij, I. (2020). How intrac-
tability spans the cognitive and evolutionary levels of explanation.
Topics in cognitive science, 12(4), 1382–1402.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., & Zhong,
C. (2022). Interpretable machine learning: Fundamental princi-
ples and 10 grand challenges. Statistics Surveys, 16(none), 1–85.
https:// doi. org/ 10. 1214/ 21- SS133.

Ruscio, J. (2008). A probability-based measure of effect size: robust-
ness to base rates and other factors. Psychological methods, 13(1),
19.

Sala, G., & Gobet, F. (2017). Does far transfer exist? negative evidence
from chess, music, and working memory training. Current Direc-
tions in Psychological Science, 26(6), 515–520.

Sala, G., Aksayli, N.D., Tatlidil, K.S., Tatsumi, T., Gondo, Y., Gobet,
F., Zwaan, R., & Verkoeijen, P. (2019). Near and far transfer in
cognitive training: A second-order meta-analysis. Collabra: Psy-
chology, 5(1)

Sheldon, K. M., Elliot, A. J., Ryan, R. M., Chirkov, V., Kim, Y., Wu, C.,
et al. (2004). Self-concordance and subjective well-being in four
cultures. Journal of Cross-Cultural Psychology, 35(2), 209–223.

Simon, H. A. (1997). Models of bounded rationality: Empirically
grounded economic reason (Vol. 3). Cambridge: MIT Press.

Skirzyński, J., Becker, F., & Lieder, F. (2021a). Automatic discovery of
interpretable planning strategies. Machine Learning, 1–43

Skirzyński, J., Jain, Y.R., & Lieder, F. (2021b). Automatic discovery
and description of human planning strategies. arXiv: 2109. 14493

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. Cambridge: MIT Press.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124–1131. https://
doi. org/ 10. 1126/ scien ce. 185. 4157. 1124

Van Rooij, I. (2008). The tractable cognition Thesis. Cognitive Science,
32(6), 939–984.

490 Computational Brain & Behavior (2022) 5:467–490

http://arxiv.org/abs/2108.09003
https://doi.org/10.13140/RG.2.2.28966.60487
https://re.is.mpg.de/uploads_file/attachment/attachment/671/20210720_ICCM_submission_final.pdf
https://re.is.mpg.de/uploads_file/attachment/attachment/671/20210720_ICCM_submission_final.pdf
https://re.is.mpg.de/uploads_file/attachment/attachment/671/20210720_ICCM_submission_final.pdf
https://doi.org/10.1037/10039-000
https://doi.org/10.1037/10039-000
https://doi.org/10.1214/21-SS133
http://arxiv.org/abs/2109.14493
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1126/science.185.4157.1124

	Boosting Human Decision-making with AI-Generated Decision Aids
	Abstract
	Introduction
	Background
	Reinforcement Learning
	Modeling Planning as Information Acquisition
	Approaches to Improving Human Decision-making
	AI-Powered Boosting

	Experiment 1: Procedural Descriptions of Planning Strategies Are More Interpretable Than Static Descriptions
	Methods
	Task
	Dependent Variables
	Procedure
	Participants

	Results
	Discussion

	AI-Powered Boosting with Procedural Descriptions of Optimal Decision Strategies
	Generating Procedural Descriptions of Planning Strategies
	Procedural Formulas
	Transforming Disjunctive Normal Form Formulas into Procedural Formulas
	Pruning

	Extending AI-Powered Boosting to Procedural Descriptions

	Experiment 2: Boosting Human Performance in Naturalistic Decision-making and Planning Tasks with AI-Generated Decision Aids
	Methods
	Participants
	Tasks
	Outcome Measures
	Procedure
	Analysis

	Results

	Discussion and Conclusion
	References

