

Abstract

- Introducing Language-Conditional Imitation • Overview: Learning algorithm (L-CIL) that uses natural language to guide behavior of artificial agents
- Method: Language reproduction with behavioral cloning
- Implementation: Neural network
- Results: Success with multiple behaviors and unseen behaviors; Issues with behavioral cloning
- Implications: Simple and promising direction for robotics

Background

- Imitation learning: Mimicking transitions in $\mathcal{D} = \{(o_i, a_i)\}_{i=0}^N$
- Behavioral cloning: Solving minimize_{θ} $\sum_{t} \mathcal{L}(\pi_{\theta}(o_t; \theta), a_t)$
- Conditional Imitation Learning: Latent information in command c_t , solve minimize_{θ} $\sum_t \mathcal{L}(\pi_{\theta}(o_t, c_t; \theta), a_t)$ [1]

Method

- Input: Trajectories and sentence descriptions of multiple behaviors in a dataset $\mathcal{D} = \{(o_t, s_t, a_t)\}_{t=1}^T$
- Transform sentences s_t into word vectors [2] $v_{\psi}(s_t)$
- Let $\ell_a(x_1, x_2), \ell_s(x_1, x_2)$ be loss functions that compare actions and sentences representations, and let $\chi_i(\mathbf{x})$ denote a projection on *i*-th dimension. Let $F(\cdot, \cdot; \theta)$ approximate $(o_t, v_\phi(s_t)) \mapsto (a_t, v_\phi(s_t))$
- Optimize

$$\begin{array}{l} \underset{\theta}{\operatorname{minimize}} & \sum_{t} \ell_a \left(\chi_1 \left(F(o_t, v_\phi(s_t); \theta) \right), a_t \right) \\ & + \sum_{t} \ell_s \left(\chi_2 (F(o_t, v_\phi(s_t); \theta)), v_\phi(s_t) \right) \end{array}$$
(1)

References

- [1] Felipe Codevilla et al. "End-to-end driving via conditional imitation learning". In: 2018 IEEE International Conference on Robotics and Automation. IEEE. 2018, pp. 1–9.
- [2] Tomas Mikolov et al. "Distributed representations of words and phrases and their compositionality". In: Advances in neural information processing *systems*. 2013, pp. 3111–3119.

LANGUAGE-CONDITIONAL IMITATION LEARNING Julian Skirzyński¹, Bobak Baghi², David Meger² ¹University of California, San Diego, ²McGill University

NAACL-HLT 2021: Visually Grounded Interaction and Language (ViGIL) Workshop, Virtual

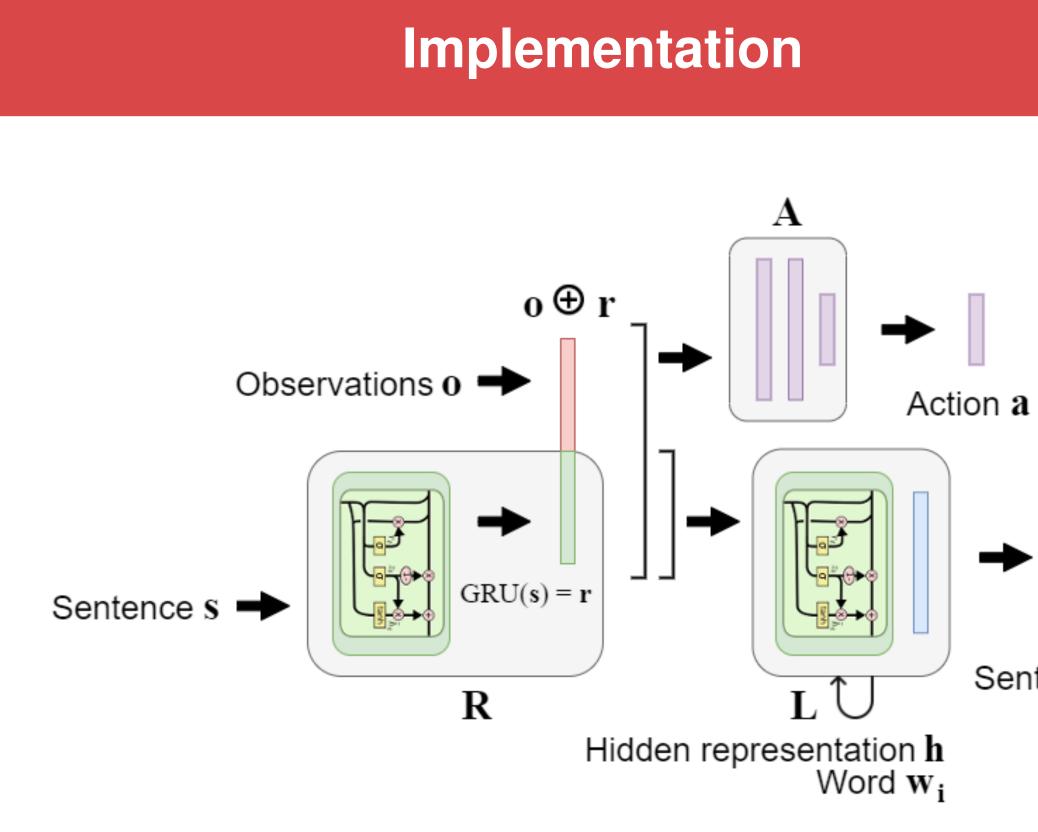


Fig. 1: Network architecture for L-CIL. Image of the GRU taken from https://colah.github.io

- Representation module R maps language to context (encoder)
- Language module L decodes context to language (decoder)
- Action module A maps observations conditioned on context to actions (feed-forward layers)

Experiments

- Driving imitation tasks developed in a self-driving simulator
- Three experiments: imitating multiple behaviors (MC), imitating multiple long behaviors (CC), imitating unseen behavior knowing the language (CA)

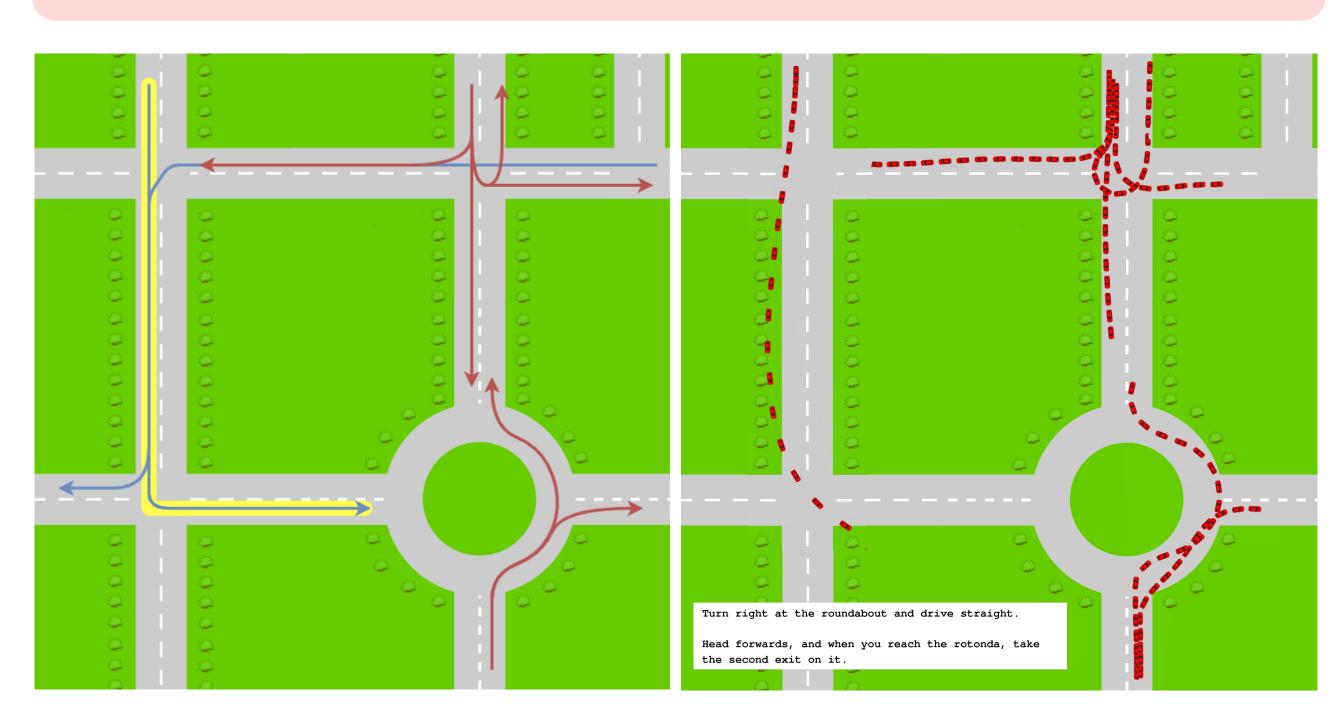


Fig. 2: Left: Map for the experiments with sample trajectories. Right: Sample rollouts outputed by L-CIL.

Baselines and settings

- Behavioral cloning (BC),
- Conditional imitation learning (CIL),
- Language-conditional imitation learning (L-CIL)
- Encoder language-conditional imitation learning minimize_{θ} $\sum_{t} \ell_a \left(\chi_1 \left(F(o_t, v_\phi(s_t); \theta) \right), a_t \right)$
- From 2 to 6 behaviors with 100 trajectories each 000 sentences of length from 11 to 31 in total.

Results

	Experiment		200	Test ser	E	
Algorithm	MC	CC	CA	200		
BC	0.062*	0.014*	0.028	0		
CIL	0.021	0.008	1.064*			
EL-CIL	0.017	0.016*	0.101*	-200		•••
L-CIL	0.029*	0.015*	0.033	-200		
÷ 1° CC	4 41 1	4 1 1 1	1 1		-200 —	100

* difference to the lowest, bolded value is significant with p<0.05

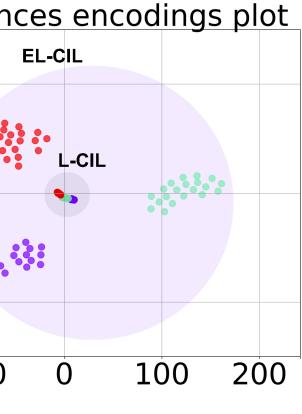
Fig. 3: Left: Mean error for different experiments and algorithms. Right: Test sentence embeddings for EL-CIL and L-CIL

- L-CIL generalizes: improvement over EL-CIL and CIL in the CA experiment, similar performance across all experiments
- L-CIL fell short to BC in the **CA** experiment
- CIL is best in discrimination experiments, but not much better than L-CIL
- L-CIL generalizes because the sentence embeddings preserve the similarities between the sentences

Discussion

- L-CIL succeeds due to its architectural setup
- L-CIL is a promising direction for Human-Computer Interaction or robotics research
- Further studies should improve the **CA** experiment

Sentence s'



arni	ng	(EL-0	CIL):
ach	and	over	600